Rivelatori per astronomia X e gamma dallo spazio

V. Fioretti, A. Bulgarelli (INAF/IASF Bologna)

Bologna, ottobre 2014

"Registrare" l'universo ad alte energie

High energies: X-ray (0.1 keV – 100 keV), Gamma-ray (> 100 keV):

<u>Space science</u>: a causa dell'assorbimento dell'atmosfera terrestre, l'osservazione è possibile solo dallo spazio (eccetto per E > 100 GeV, e.g. telescopi Cherenkov)

Hot topics: Active Galactive Nuclei, pulsars and binaries, Supernova remnants, clusters of galaxies, Gamma-ray bursts, the galactic center, etc.

Table of contents

Valentina Fioretti (fioretti@iasfbo.inaf.it), Andrea Bulgarelli (bulgarelli@iasfbo.inaf.it)

Prima parte: Interazione radiazione-materia

X-ray e Gamma-ray detectors

Principio base

- I fotoni X e Gamma interagiscono con gli elettroni atomici
- Il processo chiave di rilevazione dei fotoni X/Gamma è la ionizzazione (o photoionizzazione), dove il fotone rilascia parte o tutta la sua energia all'elettrone
- Gli elettroni ionizzati collidono con altri atomi e liberano altri elettroni
- Per misurare l'energia del fotone, la carica liberata è collezionata sia direttamente (contatori proporzionali, semiconduttori allo stato solido) o indirettamente (scintillatori)
- Il risultato finale è un impulso elettrico il cui voltaggio è proporzionale all'energia depositata nel mezzo.

L'obiettivo finale è rivelare:

- Energia
- Posizione nel cielo
- Tempo di arrivo del fotone

I processi di interazione:

- Assorbimento fotoelettrico
- Scattering Compton
- Produzione di coppie

Primary competing processes and some radiative and non-radiative decay processes

Giuseppe Dalba, La Fisica dei Raggi X, Dipartimento di Fisica, Università di Trento, a.a. 1999-2000

Effetto fotoelettrico (o fotoionizzazione)

- L'interazione avviene tra il fotone e l'atomo
- Il fotone viene completamente assorbito e un fotoelettrone è emesso da una delle shell di legame dell'atomo, con energia cinetica:

$$E_{e-} = h v - E_b$$

- Circa l'80% degli assorbimenti nella banda X avviene nella shell più interna K, con emission di un elletrone della shell K
- E' il meccanismo predominante per i raggi X nella banda 1 – 100 keV e la probabilità (la sezione d'urto) aumenta con il numero atomico Z

 $\mu_{PE}(E) \propto Z^{4.5} \times E^{-3.5}$

 Per questo motivo vengono utilizzati materiali ad alto Z (Piombo, Tungsteno) nella costruzione degli schermi dei telescopi X

Effetto fotoelettrico (o fotoionizzazione)

- L'interazione avviene tra il fotone e l'atomo
- Il fotone viene completamente assorbito e un fotoelettrone è emesso da una delle shell di legame dell'atomo, con energia cinetica:

$$E_{e-} = h \nu - E_b \sum_{\text{Energia del fotone}} E_{b-}$$

- Circa l'80% degli assorbimenti nella banda X avviene nella shell più interna K, con emission di un elletrone della shell K
- E' il meccanismo predominante per i raggi X nella banda 1 – 100 keV e la probabilità (la sezione d'urto) aumenta con il numero atomico Z

 $\mu_{PE}(E) \propto Z^{4.5} \times E^{-3.5}$

 Per questo motivo vengono utilizzati materiali ad alto Z (Piombo, Tungsteno) nella costruzione degli schermi dei telescopi X

Nobel ad Einstein nel 1921 per la spiegazione quantistica dell'effetto fotoelettrico!

Fluorescenza e l'elettrone di Auger

- A causa dell'emissione del fotoelettrone, in seguito all'interazione l'atomo è in uno stato eccitato
- A questo stato può seguire la cattura di un elettrone libero dal mezzo o il riarrangiamento degli elettroni delle altre shell
- A seguito di questa cattura/riarrangiamento viene emesso un fotone X (fluorescenza), in genere emissione di Kα essendo la K shell quella che espelle il fotoelettrone
- Oppure, l'energia di tale riarrangiamento causa l'emissione di un altro elettrone

Assorbimento fotoelettrico

- I fotoni X di fluorescenza secondari sopravvivono per brevissime distanze (~1 mm) all'interno dell'assorbitore, prima di essere a loro volta assorbiti per effetto fotoelettrico con gli e⁻ delle shell più esterne
- Disponendo di un rivelatore di volume sufficiente, tutti gli eventi fotoelettrici causano un deposito di energia nel "fotopicco", situato all'energia del fotone gamma incidente. La risposta ideale è la seguente:

• Tuttavia nelia reaita:

- I fotoni di fluorescenza possono *fuggire* dal detector, mentre i fotoelettroni sono assorbiti, causando un picco di energia dato dalla differenza tra l'energia del fotone primario e del fotone di fluorescenza (X-ray escape o escape peak)

In rivelatori pixellati la fluorescenza può essere assorbita dai pixel vicini

Materiali ad alto Z preferiti per la costruzione dei detector X

Scattering Compton

- Lo scattering Compton si verifica tra un fotone incidente e un elettrone del materiale assorbente
- E' il meccanismo di interazione predominante nella banda energetica tra 100 keV e qualche MeV
- Il fotone incidente viene deflesso di un angolo θ rispetto alla direzione di partenza e trasferisce parte della sua energia all'elettrone
- L'energia del fotone scatterato dipende dall'angolo
 θ e dall'energia di partenza secondo la relazione:

$$h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_0 c^2} (1 - \cos\theta)}$$

dove *m_oc*² è l'energia a riposo dell'elettrone (511 keV)

• L'energia dell'elettrone è invece (<u>hv</u>

$$E_{e^{-}} = hv - hv' = hv \left(\frac{\frac{hv}{m_0 c^2} (1 - \cos\theta)}{1 + \frac{hv}{m_0 c^2} (1 - \cos\theta)} \right)$$

Continuo e spalla Compton

- Se il fotone interagendo con il detector scattera e non viene assorbito, solo una parte della sua energia viene rilasciata nel detector
- Il deposito di energia dipende dall'angolo di scattering θ, e sarà massima per θ=π, angolo per cui la massima energia è rilasciata all'elettrone.
- L'effetto nello spettro rivelato è un continuo da un minimo pari a θ =0 a un massimo pari a θ = π , il *Compton edge*.
- La separazione, E_c, tra l'energia del fotone gamma incidente (fotopicco) e l'energia della spalla Compton ("Compton edge"), è data da:

Produzione di coppie e⁺-e⁻

- Se l'energia del fotone supera il doppio dell'energia di riposo dell'elettrone (1.02 MeV), il fotone interagisce con il campo elettrico del nucleo atomico e produce una coppia elettrone-positrone
- Il fotone gamma incidente completamente viene convertito in una coppia e⁺-e⁻ che assumono tutta l'energia in eccesso
- Il e⁺ si annichila con un e⁻ dell'assorbitore e 2 fotoni gamma da 511 keV ciascuno vengono emessi in direzioni opposte;

Se uno o entrambi dei fotoni a 511 keV escono dal rivelatore, lo spettro presenta dei picchi (single e double escape peaks) ad energia pari all'energia del fotone primario meno 511 keV o 1.02 MeV.

annihilation photons

Probabilità di interazione

Valentina Fioretti (fioretti@iasfbo.inaf.it), Andrea Bulgarelli (bulgarelli@iasfbo.inaf.it)

- Sia I lo spessore di un certo materiale (cm)
- Sia **n** la *densità di numero* del materiale (cm⁻³) e **p** la densità (g/cm³)
- La sezione d'urto σ è l'area che il materiale presenta al fotone per l'interazione (cm²) \rightarrow esprime la probabilità che una certa interazione possa avvenire
- Il coefficiente di attenuazione lineare μ=σn (cm⁻¹) rappresenta la probabilità per unità di percorso che un fotone ha di interagire con la sostanza nella quale si propaga

Camino libero medio $\lambda=1/\mu$ (cm)

 L'intensità misurata I di radiazione che interagisce nel materiale di spessore I è legata all'intensità incidente I₀ in accordo con la legge di Beer– Lambert

$$I = I_0 e^{-\mu l}$$

I è la radiazione emergente... • Misura della capacità di un materiale di assorbire o "scatterare" fotoni di una data energia, per unità di massa

$$(\mu/\rho) = \sigma n/\rho \text{ (cm}^2/g)$$

 $I = I_0 e^{-\mu l} = I_0 e^{-\left(\frac{\mu}{\rho}\right) \times \rho l}$
 $\rho l = g/cm^2 = \text{densità di colonna dello schermo}$

• La probabilità di interazione μ è la somma dei tre possibili meccanismi di emissione:

Il sito del NIST dove è possibile accedere ai coefficienti di attenuazione di massa di materiali e composti:

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

Attenuazioni a confronto

An **absorption edge** is a sharp discontinuity in the absorption spectrum of X-rays by an element that occurs when the energy of the photon corresponds to the energy of a shell of the atom.

Risposta del rivelatore – small detector

Figure 10.2 The "small detector" extreme in gamma-ray spectroscopy. The processes of photoelectric absorption and single Compton scattering give rise to the low-energy spectrum at the left. At higher energies, the pair production process adds a double escape peak shown in the spectrum at the right.

+ righe derivanti dagli X-ray escape per diseccitazione in conseguenza di assorbimento fotoelettrico

Risposta del rivelatore – intermediate detector

Figure 10.4 The case of intermediate detector size in gamma-ray spectroscopy. In addition to the continuum from single Compton scattering and the full-energy peak, the spectrum at the left shows the influence of multiple Compton events followed by photon escape. The full-energy peak also contains some histories that began with Compton scattering. At the right, the single escape peak corresponds to initial pair production interactions in which only one annihilation photon leaves the detector without further interaction. A double escape peak as illustrated in Fig. 10.2 will also be present due to those pair production events in which both annihilation photons escape. + righe derivanti dagli X-ray escape per diseccitazione in conseguenza di assorbimento fotoelettrico

Risposta del rivelatore – big detector

Effetto del materiale attorno al rivelatore

Figure 10.6 Influence of surrounding materials on detector response. In addition to the expected spectrum (shown as a dashed line), the representative histories shown at the top lead to the indicated corresponding features in the response function.

- I materiali
 μ/p (cm²/g) = coefficiente di attenuazione di massa
- I processi di interazione radiazione/materia Assorbimento fotoelettrico: fotoelettrone (+ characteristic X-ray)

Compton scattering (recoil electron + scattered photon)

Produzione di coppia (e+/e- \rightarrow anichilazione e+ \rightarrow 2 fotoni da $\rm m_0 c^2$

• La risposta del rivelatore

Seconda parte: I parametri fondamentali dei detector Probabilità che un fotone gamma incidente depositi energia nel rivelatore

$$\varepsilon = 1 - \frac{I}{I_0} = 1 - e^{-(\mu/\rho)\rho l}$$

• Dipende da: energia, spessore, materiale

Esempio: $\rho = 5.81 \text{ g/cm3}$ $\mu(PE) = 3.78E-01 \text{ cm2/g a 150 keV}$ Se I = 0.003 cm $\rightarrow \epsilon * 100 = 0.66$ Se I = 0.03 cm $\rightarrow \epsilon * 100 = 6.4$ Se I = 0.3 cm $\rightarrow \epsilon * 100 = 48.3$ Se I = 3 cm $\rightarrow \epsilon * 100 = 99.8$

- Absolute Efficiency: The ratio of the number of counts produced by the detector to the number of gamma rays emitted by the source (in all directions).
- Intrinsic Efficiency: The ratio of the number of pulses produced by the detector to the number of gamma rays striking the detector (quantum efficiency).
- Relative Efficiency: Efficiency of one detector relative to another.
- Full-Energy Peak (or Photopeak) Efficiency: The efficiency for producing full-energy peak pulses only, rather than a pulse of any size for the gamma ray.

Risposta del rivelatore – Caso ideale e reale

- Ideale = delta function al full energy peak
- Rumore proveniente da diverse fonti

Figure 4.4 Examples of response functions for detectors with relatively good resolution and relatively poor resolution. large amount of fluctuation are recorded from pulse to pulse even though the same energy was deposited in the detector for each event

it is important to make these fluctuation smaller

Risoluzione energetica – definizione e statistical noise

Area efficace

Area efficace: $A \times \epsilon$

 effective area, reflects the ability of the detectors/mirrors to collect radiation at different photon energies.

XMM Newton mirrors

- Sensibilità = flusso minimo rivelabile di una sorgente
 - Emissione nel continuo: fotoni cm⁻² s⁻¹ keV⁻¹
 - Emissione di righe: fotoni cm⁻² s⁻¹
- C_s = Tasso di conteggi di sorgente (<u>photons</u>)
- *C_{Bkg}* = Tasso di conteggi di fondo (<u>cts</u>) assumendo una statistica poissoniana:

$$f(k; \lambda) = \Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!},$$

Sensibilità (sensitivity)

Valentina Fioretti (fioretti@iasfbo.inaf.it), Andrea Bulgarelli (bulgarelli@iasfbo.inaf.it)

Risoluzione angolare/spaziale

- Descrive l'abilità del detector nel separare oggetto puntiformi
- La risoluzione angolare di uno strumento e' determinata dalla Point Spread Function (PSF), che dipende da (1) posizione della sorgente sul detector (2) dall'energia dei fotoni emessi dalla sorgente
- Encircled energy fraction: % di fotoni che cadono in un cerchio di un dato raggio centrato sul centroide della PSF --> 50% → HEW (Half Energy Width)
- Si da anche FWHM, ma HEW è più rappresentativo perché spesso la PSF non è una gaussiana

Valentina Fioretti (fioretti@iasfbo.inaf.it), Andrea Bulgarelli (bulgarelli@iasfbo.inaf.it)

Terza parte: I rivelatori

- Basse-medie energie (1-20 keV)
 - Microchannel plates
 - Contatori proporzionali
 - Microcalorimetri
 - CCD
- Energie intermedie (15 keV MeV)
 - Scintillatori
 - Alta efficienza, moderata $\Delta E/E$, $\Delta x \sim 0.5$ cm
 - Rivelatori a stato solido
 - Alta efficienza, alta $\Delta E/E$, problema cooling, $\Delta x \sim 0.1$ mm
 - Vantaggio Si: processo di produzione consolidato
- Alte energie (MeV GeV)
 - Spark chambers
 - Convertitori / Tracker basati su scattering Compton e produzione di coppie

Scintillatori

- Scintillatore = Materiale che presenta scintillazione (luminescenza quando eccitato da radiazione elettromagnetica)
- In seguito all'interazione con il fotone, gli atomi eccitati ionizzati decadono emettendo luce ad energie basse, tipicamente ottica
- La luce di scintillazione incide sul fotocatodo di un fotomoltiplicatore liberando elettroni per effetto fotoelettrico
- Il segnale prodotto è proporzionale all'energia del fotone incidente
- Processo inefficiente → II "drogaggio" del reticolo cristallino con impurità rende più efficiente il processo (riduce band gap), riduce autoassorbimento
- Gli scintillatori possono essere sia organici (plastico) che inorganici (Nal, Csl)

Valentina Fioretti (fioretti@iasfbo.inaf.it), Andrea Bulgarelli (bulgarelli@iasfbo.inaf.it)

- Elevata efficienza di conversione dell'energia dei fotoni in luce di fluorescenza (efficienza di scintillazione);
- L'intensità della luce deve essere linearmente proporzionale all'energia delle particelle e quindi all'energia persa dal fotone gamma primario (linearità);
- Trasparenza alla λ della propria luce di fluorescenza (picco a ~550 nm per il CsI(Tl));
- Elevati $\rho \in \mathbf{Z} \Rightarrow \underline{\text{elevato } \mu_{pe}} \Rightarrow \underline{\text{elevata } \epsilon}$ e potere spettroscopico;
- Indice di rifrazione vicino a quello del vetro per ottimizzare l'accoppiamento ottico con dispositivi per la lettura della luce (PMT, PD);

- This x-ray photon flux strikes the cluster of 69 million lead-oxide coated glass tubes (each are only 10 micrometers in diameter and just over a millimeter long).
- When an x-ray photon hits the side of one of these tubes, an electron is emitted. The resulting charge is then amplified by orders of magnitude by a cascade effect within the tube which is held at an electrical potential. The electron flux out the bottom of the microchannel plate impinges onto the cross grid detector. The location of charges on the grid is processed to build an image of the source of X-rays.

Moltiplicatore di e-via emissione secondaria (**elettromoltiplicazione**)

- Rivelatori basati su materiali semiconduttori che per rivelare la radiazione sfruttano le caratteristiche della struttura a bande dei cristalli (banda di valenza, banda di conduzione, band gap).
- Per effetto di processi di eccitazione (ad esempio <u>agitazione termica</u> o <u>assorbimento di</u> <u>radiazione</u>) gli elettroni dalla banda di valenza (BV) vengono promossi in banda di conduzione (BC) e possono essere raccolti come segnale utile.
- La rivelazione della carica è diretta

-V

E

- Tellurio di Cadmio (CdTe)
- Energy gap (1.52 eV)
 - Non necessaria criogenia ->
 - corrente di buio contenuta
- Alta ρ (~6 g cm⁻³) per efficienza
- Alto Z (48, 52) per effetto fotoelettrico:
 - 10 volte il μ_{Compt} fino a 110 keV (60 il Ge, 25 il Si);

- buona efficienza di assorbimento fotoelettrico (per unità di lunghezza) fino a 4 o 5 volte superiore al Ge e 100 volte maggiore a quella del Si
- Single site ok per imaging
- Facilmente segmentabile a piccole dimensioni:
 - \Rightarrow risoluzione spaziale
- bassa efficienza di raccolta delle cariche (mobilità bassa rispetto a Si e Ge), comporta che la risoluzione energetica raggiungibile con il CdTe resta al di sotto di quella del Si o del Ge

Valentina Fioretti (fioretti@iasfbo.inaf.it),

- CdZnTe -> CZT
- differenza con il CdTe puro consiste nell'inserire nella fase di crescita del cristallo, una certa quantita` di ZnTe; con questo si ottiene un semiconduttore con un gap tipico di 1,5÷1,6 eV
- La <u>corrente di buio del CZT è inferiore</u> a quella del CdTe e questo ha come effetto la possibilità di applicare al semiconduttore campi elettrici relativamente intensi che rendono piu` veloce la raccolta del cariche
- Esempio: il rivelatore di Nustar

Il CCD (Charge Coupled Device) consiste in un circuito integrato formato da una riga, o da una griglia, di elementi semiconduttori in grado di accumulare una carica elettrica proporzionale all'energia del fotone che li colpisce. Questi elementi sono accoppiati (*coupled*) in modo che ognuno di essi, sollecitato da un impulso elettrico, possa trasferire la propria carica ad un altro elemento adiacente.

Caratteristiche:

- Excellent imaging resolution but usually small FOV
 - Small pixels
- Good energy resolution
 - Order of magnitude improvement over proportional counters
- Poor timing resolution
 - Slow readout time
 - Improvement at the expense of imaging capability
- Photon "pile-up"

The CCDs of the pn camera: The picture shows the twelve chips mounted and the connections to the integrated preamplifiers.