AGN (accretion \& ejection) Physics:

Mauro Dadina

INAF-IASF, Bologna

(I) General framework (1.5h)

- Paradigm(s)
- The 2 "Unknowns"
- The 3 "Known" (models + basic physics)
(I) The 2 contenders (2h)
- Relativistic reflection (=accretion)
- Relativistic absorption (=ejection)

These lectures are "complementary" to others on evolution of AGNs, and on high energy detectors as well.

Goal of the lectures: Give introductory informations on general "models" of AGNs, and in particular on reflection vs absorption hypothesis in RQAGNs

Bibliography:
A. Mueller, PhD Thesis, Heidelberg, 2004
C. Done, Lectures, August 2010, arXiv:1008.2287v1

Give a panorama on theoretical models+spectral physics for AGNs\&BHs

The BH paradigm: an AGN is powered by an accreting BH

This is what we think a black hole may look like

The .Unknowns" or the Open issues

First major "Unknown": The type of accretion flow

We don't know exactly the accretion mode/type (SAD, ADAF, RIAF, CDAF, etc.)...
advection-dominated accretion flow

- Shakura-Sunyaev disk (SSD) or equivalently standard accretion disk (SAD)
- advection-dominated accretion flow (ADAF)
- radiatively -inefficient accretion flow (RIAF)
- convection-dominated accretion flow (CDAF)
- slim disk
- truncated disk - advective tori (TDAT)
- non-radiative accretion flow (NRAF)

Second major "Unknown": The disk-corona geometry

(Haardt '96)

Muller '04

The 3 "Knowns"...or the AGN "Models"

BH paradigm + assumptions on geometry + emission mechanisms (physics) + Multi-v observations
= AGN "Model"

The TWO major RQ AGN models are:
1: 2-Phases model (for Radio Quiet AGNs)
2: Inefficient model (for Low Luminosity AGNs .. also RL)

Model 1

The 2-phases (efficient) model (RQAGNs)

Model I (RQ AGN): X-ray observations - Lightcurves

$\Delta \mathrm{L} \sim \mathrm{L} \sim$ up to $10^{44} \mathrm{erg} / \mathrm{s}$
Light curves
N.B: $\Delta t \sim 50 \mathrm{~s}$ corresponds to $1 \mathrm{R}_{\mathrm{g}}$ for $\mathrm{M}=10^{7} \mathrm{Msol}$

$$
\left(\mathrm{t} \sim \mathrm{R}_{\mathrm{g}} / \mathrm{c} \sim \mathrm{GM} / \mathrm{c}^{3} \sim 50 \mathrm{M}_{7} \mathrm{~s}\right)
$$

Implies most of radiation from innermost regions

(At least) 4 major spectral components:
2. Power-law Component (Thermal Comptonization)
3. Reflection component (Fluorescence Lines + Compton hump)
4. Warm absorber (photoelectric absorption)

Typical X-ray Spectrum of a Seyfert 1 Galaxy

 \Leftrightarrow Standard two-phase Comptonization model

1- Black Body emission from accretion disk

Planck radiation law:

1- Black Body emission from accretion disk

Multi-temperature disk black-body emission (see also "big blue bump")
nN.B.: in SADthin disk:
N.B: Another important consequence/application: Innermost Stable Circular Orbit (ISCO) depends on BH spin $\left(\mathrm{a}_{*}\right)$

Power-law spectra: an universal law $\Gamma=1.7$?

Nandra \& Pounds 1994

858
T. J. Turner and K. A. Pounds
consistent with a mean α of 0.55 ± 0.04 for the hard X-ray slope, constant over variations of an order of magnitude in flux.
extreme (iii) 3 C 273 is by far the most luminous source in our sample and may represent one extreme of the Seyfert phenomenon. Numerous observations with EXOSAT and previous giving $\alpha=0.533^{+0.06}$ shown $3 C 273$ to have a flat spectrum, the observation reanalysed here
(iv) Akn 120 is another bright Seyfert with a well-constrained EXOSAT spectrum. The ME data alone showed a slope of $\alpha=1.10 \pm 0.23$, significantly steeper than the mean α for the
sample. Addition of the LE data confirmed the steep slope as $\alpha=1.19 \pm 0.08$. A previous sample. Addition of the LE data confirmed the steep slope as $\alpha=1.19 \pm 0.08$. A previous
Einstein observation of Akn 120 revealed a steep slope consistent with our result (Urry et al. 1987).

Fig. 6 (a) shows α versus \log of the $2-10 \mathrm{keV}$ luminosity for the ME data and Fig. 6 (b) shows the same for the ME + LE data, where error bars on α cover the 90 per cent confidence range

Figure 6. Energy index, α, versus $2-10 \mathrm{keV}$ luminosity (absorption corrected). Only hard X -ray components
are plotted for (a) the ME data and (b) the ME + LE data.
© Royal Astronomical Society - Provided by the NASA Astrophysics Data System

II - Power-law (Thermal Comptonization from the corona)

Thermal comptonization from thermal electrons plasma with KT and optical depth τ

If electron at rest:

$$
\begin{aligned}
\Delta E & =E^{\prime}-E \\
& \simeq-\frac{E^{2}}{m_{e} c^{2}}(1-\cos \theta)
\end{aligned}
$$

For non-stationnary electron:
$\Delta E<0 \rightarrow$ Compton
$\Delta E>0 \rightarrow$ Inverse Compton

II - Power-law (Thermal Comptonization from the corona)

$$
f_{\epsilon}(\epsilon) d \epsilon=\sqrt{\frac{1}{\pi \epsilon k T}} \exp \left[\frac{-\epsilon}{k T}\right] d \epsilon
$$

Maxwellian Distribution of electron energies \Rightarrow produce power-law + high energy cut-off

$$
\begin{aligned}
& F_{E} \propto E^{-\Gamma(k T, \tau)} \exp \left(-\frac{E}{E_{c}(k T, \tau)}\right) \\
& \left\{\begin{array}{l}
\Gamma \propto\left(\frac{L_{\text {heat }}}{L_{\text {cool }}}\right)^{-\delta} \propto \mathrm{f}(\mathrm{kT}, \tau) \\
E_{c} \simeq k T
\end{array}\right.
\end{aligned}
$$

$\Gamma(k T, \tau) \Rightarrow$ Spectral degeneration since different (kT, τ) can yield same 「

II - Power-law (Thermal Comptonization from the corona)

$\Theta=k T_{e} / m_{e} c^{2} \quad \epsilon_{\text {out }, 1}=(1+4 \Theta) \epsilon_{\text {in }}$
$\log f(\epsilon) \propto \ln (1 / \tau) / \ln (1+4 \Theta)$ i.e. $f(\epsilon) \propto \epsilon^{-\alpha}$ with $\alpha=\ln \tau / \ln (1+4 \Theta)$

III - Reflection component (line + continuum)

\propto Inclination
$\propto \Omega / 2 \Pi$ (coverage, isotropy)
$\propto \mathrm{Ab}$

Major modifications expected:
a) Ionization effects
b) Relativistic effects
or a combination of both...

IV - absorption along the line of sight

Photoelectric absorption

Neutral

Ionized (Xi=L/nR**2)

Model 2

The radiatively inefficient model (LLAGNs)

Modello II (LL AGN): X-ray observations - Images and Lightcurves

SgrA*

Images + Lightcurves

Low-L and diffuse X-ray source
N.B: $\Delta t \sim 50 \mathrm{~s}$ corresponds to $1 \mathrm{R}_{\mathrm{g}}$ per $\mathrm{M}=10^{7} \mathrm{M}$ $\left(t \sim R_{g} / c \sim G M / c^{3} \sim 50 M_{7} s\right)$

Low-L, likely diffused emission + isolated flares (otherwise quiescent)

Model II (LL AGN): X-ray observations - Typical Spectra

Spectra:

$L x \sim 2 \times 10^{33} \mathrm{erg} / \mathrm{s}<10^{-11} \mathrm{~L}_{\text {Edd }}$

Bremsstrahlung Thermal-like quiescent spectrum
(At least) 2 major spectral components:

1. Synchrotron emission
2. Bremsstrahlung (+ power-laws during flares)

Model II (LL AGN):

Simil-ADAFs:

- advection-dominated accretion flow (ADAF)
- radiatively-inefficient accretion flow (RIAF)
- convection-dominated accretion flow (CDAF)
- slim disk
- truncated disk - advective tori (TDAT)
- non-radiative accretion flow (NRAF)

Synchrotron
 (non-thermal emission)

Thermal Bremsstrahlung from

+ a very hot, optically thin, geometrically thick flow

Summary

After introducing the BH and AGN paradigm, we have reviewed 3 major "models" of AGN: Model I: 2-phase model (radio-quiet AGNs)

1. Multi-T black-body emission (soft-excess)
2. Thermal Comptonization (bower-law)
3. Reflection (FeK line + Compton hump)
4. Absorption (ionized, partially covering, etc.)

Model II: Inefficient model (LLAGIVS)

1. Synchroiton
2. Bremsstrahlung (thermal)

Power-law spectra: an universal law $\Gamma=1.7$?

Nandra \& Pounds 1994

858
T. J. Turner and K. A. Pounds
consistent with a mean α of 0.55 ± 0.04 for the hard X-ray slope, constant over variations of an order of magnitude in flux.
extreme (iii) 3 C 273 is by far the most luminous source in our sample and may represent one extreme of the Seyfert phenomenon. Numerous observations with EXOSAT and previous giving $\alpha=0.533^{+0.06}$ shown $3 C 273$ to have a flat spectrum, the observation reanalysed here
(iv) Akn 120 is another bright Seyfert with a well-constrained EXOSAT spectrum. The ME data alone showed a slope of $\alpha=1.10 \pm 0.23$, significantly steeper than the mean α for the
sample. Addition of the LE data confirmed the steep slope as $\alpha=1.19 \pm 0.08$. A previous sample. Addition of the LE data confirmed the steep slope as $\alpha=1.19 \pm 0.08$. A previous
Einstein observation of Akn 120 revealed a steep slope consistent with our result (Urry et al. 1987).

Fig. 6 (a) shows α versus \log of the $2-10 \mathrm{keV}$ luminosity for the ME data and Fig. 6 (b) shows the same for the ME + LE data, where error bars on α cover the 90 per cent confidence range

Figure 6. Energy index, α, versus $2-10 \mathrm{keV}$ luminosity (absorption corrected). Only hard X -ray components
are plotted for (a) the ME data and (b) the ME + LE data.
© Royal Astronomical Society - Provided by the NASA Astrophysics Data System

III - Reflection component (line + continuum)

\propto Inclination
$\propto \Omega / 2 \Pi$ (coverage, isotropy)
$\propto \mathrm{Ab}$

Major modifications expected:
a) Ionization effects
b) Relativistic effects
or a combination of both...

Reflection(s) (i.e. accretion)

Typical X-ray Spectrum of a Seyfert 1 Galaxy

 \Leftrightarrow Standard two-phase Comptonization model

Reflection: Observations

Pre-Chandra \& XMM-Newton

BeppoSAX obs. of MCG-6-30-15
ASCA obs. of Sey1 MCG-6-30-15

ASCA ---> Broad (relativistic) lines are common, and ubiquitous (?) in Seyfert1s!

(Nandra et al. '98)

Reflection: Observations

Yes, we see broad lines indeed!

Reflection: Re-affirmed importance of broad iron lines

Nandra et al., 2007,
De La Calle et al., 2010

Similar line profiles from stellar-mass and super-massive black hole systems... demonstrates insensitivity of line profile to mass

Cygnus X-1

Reflection: Observations

Post-Chandra \& XMM-Newton

Also some narrow redshifted lines...

Chandra - NGC3516

(Turner et al. '02)
Origin in innermost regions of accretion disk+ blob-like structure (or inflowing blobs?)

Dovciak et al., 2004

XMM - NGC3516

XMM - ESO198-G024

Guainazzi et al., 2003

Reflection: Interpretation

We understand (theoretical) reflection models... don't we? ;-)

(e.g. Reynolds et al. '94
\propto Inclination
$\propto \Omega / 2 \Pi$ (coverage, isotropy)
$\propto \mathrm{Ab}$

Major modifications expected:
a) Ionization effects
b) Relativistic effects
or a combination of both...

Reflection: (Fe) Fluorescence Line

Photoelectric Absorption

Reflection: A- Ionization effects

Major variations:

1) FeK energy (\uparrow)
2) FeK intensity ($\downarrow \uparrow \uparrow, \downarrow)$
3) Soft lines intensity/energy ($\uparrow, \downarrow)$

Ballantyne \& Fabian '02, Ross \& Fabian '93, '05, Young+, Nayakshin+, Ballantyne+, Rozanska +, Dumo

Reflection: B - Relativistic effects

N.B: Not only relativistic lines, but also reflection

(Done \& Zycki, '98)
(Fabian et al. '00)

Figure 6.2: Simulated disk image around a central Kerr black hole color-coded in the generalized Doppler factor g. The distribution illustrates redshift $g<1$ (black to red), no shift $g=1$ (white) and blueshift $g>1$ (blue). Regions of Doppler effect, beaming and gravitational redshift are marked. The inclination angle amounts $i=60^{\circ}$.

Figure 6.3: Simulated appearance of a uniformly luminous standard disk around a central Kerr black hole, $a \simeq 1$. The emission is color-coded and scaled to its maximum value (white). The disk is intermediately inclined to $i=40^{\circ}$. The forward beaming spot of the counterclockwisely rotating disk is clearly seen on the left whereas the right side exhibits suppressed emission due to back beaming. The black hole is hidden at the Great Black Spot in the center of the image.

Reflection: C - Ionization + relativistic effects

Reflection: Variability

Post-Chandra \& XMM-Newton

...other independent evidence of FeK line variability...

Turner et al., 2003

Origin in innermost regions of accretion disk

Reflection: Reverberation mapping - simulation

...The idea would be to perform FeK (disk)line reverberation/echo mapping...

Transfer function for a single flare:

M and a !

(Reynolds '00)
(But see also:
Stella '90,
Matt \& Perola '92, Campana \& Stella '93)
(Young \& Reynolds, '01)

Reflection: Reverberation mapping - real data

Lags in frequency space

Absorption(s) (i.e. ejection)

Absorption: BAL QSOs

Evidence of absorbers along the line of sight to AGNs

...known/seen since long ago

Fast (v up to $\sim 50000 \mathrm{~km} / \mathrm{s}$) winds in
BAL QSOs (20% of all QSOs)

Weymann et al., '91;
Reichards et al., '03

Most (>50\%) Seyfert 1 galaxies exhibit Warm Absorbers

Clear since years that warm absorbers must be dynamically important (radiatively driven outflow located in BLR and NLR)

Open Problem: Characterisation of warm absorber? (cov. Factor, ion. state, mass/energy outflow, etc.)

Many more details from Chandra gratings

 NGC3783 Exp=900 ks

Consistent with models which predict many absorption features

Kallman et al. '05

Kaspi et al. '01
Netzer et al. '02 Georges et al. '03
\longrightarrow Clear now that often multiple ionization \& kinetic components: outflows with $\sim 100-1000 \mathrm{~km} / \mathrm{s}$

Absorption: UFOs

New and unexpected results from Chandra and XMM-Newton observations

Blue-shifted absorption lines/edges - High-v
(If) interpreted as K α resonant absorption by Fe XXV (6.70 keV) or FeXXVI (6.96 keV)

2003
\Rightarrow massive, high velocity and highly ionized outflows in several RQ AGNs/QSOs Mass outflow rate: comparable to Edd. Acc. rate ($\sim M_{o} / \mathrm{yr}$); velocity $\sim 0.1-0.2$ c

Absorption: UFOs

Tombesi et al. (2010) analysed in a systematic and uniform way, a (almost) complete sample of nearby, X-ray bright, radio-quiet AGNs

z distribution of sources

4-10keV fluxes

- Selection of all NLSy1, Sy1 and Sy2 in RXTE All-Sky Slew Survey Catalog (XSS; Revnivtsev et al. 2004)
- Cross-correlation with XMM-Newton Accepted Targets Catalog
- 44 objects for 104 pointed XMM-Newton observations
- Local (z<0.1)
- X-ray bright $\left(F_{4-10 \mathrm{kev}}=10^{-12}-10^{-10} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right)$

Absorption: UFOs

Main result: UFOs (Ultra-Fast Outflows) are confirmed and are quite common

Blue-shift velocity distribution

Cumulative velocity distribution

- 36 absorption lines detected in all 104 XMM observations
- Identified with FeXXV and FeXXVI K-shell resonant absorption
- 19/44 objects with absorption lines ($\approx 43 \%$)
- 17/44 objects with blue-shifted absorption lines (lower limit $\approx 39 \%$, can reach a maximum of $\approx 60 \%$)
- 11/44 objects with outflow velocity >0.1c ($\approx 25 \%$)
- Blue-shift velocity distribution ~0-0.3c, peak $\sim 0.1 \mathrm{c}$
- Average outflow velocity 0.110 ± 0.004 c

Tombesi et al. 2010a (The UFO's hunters commander in chief)

Absorption: Results on UFOs

- estimated distances $\mathrm{r}<0.01-0.1 \mathrm{pc}\left(<10^{2}-10^{5} \mathrm{r}_{\mathrm{s}}\right)$
(accretion disk winds? e.g. Elvis 2000; King \& Pounds 2003)
- Often $\mathrm{v}_{\text {out }}>\mathrm{v}_{\text {esc }}$, but not always, material shall fall back - Often $\mathrm{v}_{\text {out }}>\mathrm{v}_{\text {esc }}$, but not always, material shall fall back
sometimes? ("aborted jet"? e.g. Ghisellini et al. 2004, Dadina et al. 2005)
- variability time scales t~1day - 1year
- $L_{\text {bol }} / L_{\text {Edd }} \sim 0.1-1$
- $M_{\text {out }} / M_{\text {acc }} \sim 0.1-1$
- $\mathrm{E}_{\mathrm{k}} \sim 10^{44}-10^{45} \mathrm{erg} \mathrm{s}^{-1} \sim 0.1 \mathrm{~L}_{\text {bol }}$
(last two estimates depend on covering fraction C)
- Acceleration mechanism? Line, magnetically or momentum driven?


``` :
```

.
 .

- \qquad

Absorption: Interpretation - Three main wind dynamical models

i) Thermally driven winds from BLR or torus

Balsara \& Krolik, 93; Woods et al. '96

i) \Rightarrow Large R, low v

i) and iii) \Rightarrow Low R and large v

Emmering, Blandford \& Shlosman, '92; Kato et al. '03

Absorption: Final impact - An open issue

ü $\quad N w\left(\mathrm{~cm}^{-2}\right)$
ü Location (R, DeltaR)
ü Ionization state (ξ)
ü Velocity
ü Covering factor
ü Frequency in AGNs

Fundamental to:
i) PHYSICS of accelerated and accreted flows (winds?, blobs?, etc.), i.e. understand how BHs accelerate earth-like quantities of gas to relativistic velocities
i) COSMOLOGY: i.e. estimate the mass outflow rate, thus the impact of AGN outflows on ISM and IGM enrichment and heating!

Elvis et al. '00, Creenshaw et al. '03, King et al. '03, Chartas et al. '03,
Yaqoob et al. '05, Blustin et al. '05, Risaliti et al. '05, Krongold et al. '07

Current estimates have order of magnitude uncertainties, they go from: $d M / d t\left(\propto L_{\text {kin }}\right)$ few $\%$ to several times $d M_{\text {acc }} / d t\left(\propto L_{\text {edd }}\right)$

This is a fundamental (open) issue

Reflection vs. Absorption? conclusions

- Reflection hypothesis is robust and its predictions are consistent with all existing data.
- Nevertheless, absorption **is** present and potentially very complex.
ü
- Both phenomena are interesting because probe "extreme" (inflow/outflow) conditions.

Disentangling between the two requires the combination of:
High throughput @ 6 keV
and
calorimeter-type energy resolution (future telescopes...)

Conclusions \& Summary

Goal of the lectures: Give introductory informations on general "models" of AGNs, and in particular on reflection vs absorption hypothesis in RQAGNs

We have reviewed basic physics with basic assumptions for 3 major "models" of AGN

1- The 2-Phases model (RQAGNs)
2- The Inefficient model (LLAGNs)
3- The Jet model (RLAGNs)
We have focused on 1 , and address the reflection vs. absorption hypothesis to explain the X-ray spectra of RQAGNs

Not a "mere" fitting exercise but major physical differences in the two hypothesis:

Relativistic Reflection: Produced within few $(<10) R_{g}$ and carries information on BH spin and mass
(Very) Complex Absorption: Produced farther at 100s R_{g} and carries information on wind/jet base

This is the END....

Questions

Thy studying BHs in distant/faint AGNs rather than nearby/bright GBH

What really matters in these studies is the n. of photons (i.e. flux, $F_{\text {obs }}$) per unit of light crossing time scale $\mathrm{t}_{\text {reverb }} \sim \mathrm{R}_{\mathrm{g}} / \mathrm{C} \sim \mathrm{GM} / \mathrm{c}^{3} \sim 500 \mathrm{M}_{8} \mathrm{~S}$ GBHCs
$\mathrm{F}_{\text {obs,gbhc }} \sim \mathrm{Crab} \sim 10^{-8}$
$\mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s}$
$\mathrm{T}_{\text {reverb,gbhc }} \sim 50 \mu \mathrm{~s}$
$\mathrm{R}_{\text {obhc }}=\mathrm{F}_{\text {obs }} / \mathrm{t}_{\text {reverb }}$

Delta L ~L~up to $10^{44} \mathrm{erg} / \mathrm{s}$

OUT

Disklines reverberation mapping (X-rays)
$\Downarrow \downarrow$
M. a
(Probe GR within 10 Rs,
i.e. strong field)

BLR reverberation mapping (optical) ($\mathrm{v} \sim$ FWHM \propto delay \sim dist.) (v and $б \propto$ dist.)

$$
\Downarrow \Downarrow \quad \Downarrow \downarrow \downarrow
$$

M.

Stellar motions dynamics
(rot. Curves) + water masers

X-ray spectra of winds/outflows

Formation of a P-Cygni Line- Profile

