Logarithmic Error Bars

- Suppose that one has a sufficient number of measurements to make an estimate of a measured quantity y and report its error, $\pm \delta y$.
- The error, $\pm \delta y$, is represented on a Cartesian plot by extending lines of the appropriate size above and below the point y.

log Error Bars (cont.)

- If plotted on a logarithmic plot, however, this practice leads to asymmetric error bars.

log Error Bars (cont.)

- On the assumption of small errors, a differiential analysis can be used

$$
\delta z \approx d z=d[\log (y)]=\frac{1}{2.303} \frac{d y}{y} \approx 0.434 \frac{\delta y}{y}
$$

- The error $\delta \boldsymbol{z}$ is thus given by the relative error in y

$$
\delta z \approx 0.434 \frac{\delta y}{y}
$$

