

#### The foundamental parameters of X-ray telescopes



#### C. Vignali, M. Dadina



..since the birth of X-ray Astronomy in 1962, improvements were carried out in terms of sensitivity, angular resolution, energy resolution and energy bandpass



#### The Golden age of X-ray Astronomy





Chandra





Suzaku



#### Sensitivity:





Angular resolution (PSF FWHM, on-axis vs. off-axis, ...)





**Point Spread Function (PSF)** – describes the response of an imaging system to a point source or point object.

HEW (PSF), FWHM (PSF) = angular resolution

PSF = function of (x,y) or  $(r, \vartheta)$ .

### Chandra

#### High Resolution Mirror Assembly (HRMA): On-axis PSF





#### High Resolution Mirror Assembly (HRMA): Off-axis PSF





CDF-N 2Ms exposure

#### Resulting image on the focal plane of *Chandra*-ACIS



#### XMM-Newton: the EPIC on-axis PSF



spider-like pattern due to the support of the Wolter I mirrors

| Mirror module             | 2                | 3            | 4            |
|---------------------------|------------------|--------------|--------------|
| Instr. chain <sup>a</sup> | $\mathbf{pn}$    | MOS-1+RGS-1  | MOS-2+RGS-2  |
|                           | orbit/ground     | orbit/ground | orbit/ground |
| FWHM [ "]                 | $< 12.5^{b}/6.6$ | 4.3/6.0      | 4.4/4.5      |
| HEW["]                    | 15.2/15.1        | 13.8/13.6    | 13.0/12.8    |

PSF FWHM higher than in *Chandra* but much larger effective area Background (and confusion limit) can be an issue

110 arcsec

#### XMM-Newton: the EPIC on-axis PSF



#### XMM-Newton: the EPIC off-axis PSF



# Chandra and XMM-Newton (telescopes and CCD detectors)

#### **Chandra = angular resolution**



Only four, robust shells High-quality of shell production to allow <arcsec on-axis angular resolution (the best so far in X-rays)

To focus X-rays, angles < critical angle for total reflection are needed



#### High Resolution Mirror Assembly (HRMA)





#### Chandra focal-plane detectors: CCDs



#### XMM-Newton = large effective area

#### 3 modules, 58 shells





#### XMM-Newton: all instruments at work simultaneously





# Effective area (and its dependencies)

#### **Mirrors and Effective Area**



- Effective area it is the area "encoded" in the ARF [cm<sup>2</sup>]
- **Geometric area** "cross-section" of the telescope
- **Reflectivity** fraction of photons reflected by the mirros (function of energy)
- **Vignetting** quantifies the fraction of "lost" photons (function of the offaxis angle from the optical axis, 9, and the energy of the incoming photon)
- **Quantum Efficiency** fraction of incident photons on the detector actually registered by the detector. In the case of CCD, QE=f(energy, position on the detector)

#### Chandra High Resolution Mirror Assembly (HRMA): Effective Area





#### Chandra: Effective area



#### Chandra: vignetting

Ratio of the off-axis vs. on-axis counts at different off-axis angles



Hard X-ray photons are more difficult to focus → Vignetting

#### Chandra: Quantum efficiency



#### XMM-Newton: mirror effective (geometric) area





#### XMM-Newton: effective area



Energy [keV]

#### XMM-Newton: vignetting



#### XMM-Newton: quantum efficiency



Strong decrease in the QE above 10 keV, where also the effective area due to the mirrors has a significant decrease

#### XMM-Newton: effective area dependence on the filter choice



To avoid contamination from bright, soft objects (e.g., stars), a medium/thick filter is adopted

You will account for all this information creating a file named arf (ancillary response file)

#### Chandra

#### XMM-Newton



# Spectral (energy) resolution

# esolution t 6 keV $E^{-1/2}$ (E in keV)

0

2000

Typical CCD resolution 100-150 eV at 6 keV

 $\Delta E(FWHM)/E \propto E^{-1/2}$  (E in keV)

#### XMM-Newton: energy resolution



#### Chandra: energy resolution

6000

8000

10000

4000

Energy (eV)

You will account for all this information creating a file named rmf (redistribution matrix file)



#### INTEGRAL, Swift BAT NuSTAR











#### 1 Ms Sensitivity

3.2 x 10<sup>-15</sup> erg/cm<sup>2</sup>/s (6 – 10 keV) 1.4 x 10<sup>-14</sup> (10 – 30 keV)

#### Timing

relative 100 microsec absolute 3 msec

#### Imaging

| HPD          | 58"          |
|--------------|--------------|
| FWHM         | 16"          |
| Localization | 2" (1-sigma) |

#### **Spectral response**

energy range 3-79 keVthreshold2.0 keV $\Delta E @ 6 \text{ keV}$ 0.4 keV FWHM $\Delta E @ 60 \text{ keV}$ 1.0 keV FWHM

#### Field of View

| FWZI | 12.5' x 12.5' |
|------|---------------|
| FWHI | 10' @ 10 keV  |
|      | 8' @ 40 keV   |
|      | 6' @ 68 keV   |

#### Target of Opportunity

response <24 hr (reqmt) typical 6-8 hours 80% sky accessibility

# **Focal Plane Detector**

| Focal Plane<br>Parameter             | Value                                           |
|--------------------------------------|-------------------------------------------------|
| Detector Anode                       | 32 pixel x 32 pixel                             |
| Pixel Size                           | 0.6 mm/12.3"                                    |
| Focal Plane Size                     | 12' x 12'                                       |
| Energy threshold                     | 2 keV                                           |
| Time resolution                      | 2ms                                             |
| Dead time fraction<br>(at threshold) | 5%                                              |
| Max processing rate                  | 400 events s <sup>-1</sup> module <sup>-1</sup> |
| Max. flux meas. rate                 | 10 <sup>4</sup> counts s <sup>-1</sup>          |

Number of FPDs: 2 Material: CdZnTe 1 FPD ⇒ 4 detectors (2x2 array) Detector area =2 x 2 cm Detector thickness = 2 mm



## **Focal Plane Detector**

**<sup>57</sup>Co** spectrum of one CZT pixel (gamma-ray lines at 6.40, 7.06, 14.4, 122 and 136 keV).

The 146 keV peak is produced by the test pulser.



**Operating settings**: Temperature = 278 K High voltage= -450 V Acquisition time = one day Energy resolution: @ 14.4 keV = 0.5 keV @ 122 keV = 0.9 keV



#### Cassiopeia A



Red: NuSTAR Fe Blue: NuSTAR 10-25 keV Green: Chandra 4-6 keV