
Spectral study of a changing-state Seyfert 1 galaxy called H0557-385

AIM OF THIS LAB

(A two state spectrum...)

→ Understand (if possible) whether (intrinsic) X-ray source emission has shutoff, and is now reflection dominated or whether it has experienced strong absorption along the l.o.s.

Figure 1. EPIC pn spectra of H0557–385 in 2002 and 2006.

PLAN – Spectral study

Goals:

Obtain a best-fit model for the low state spectrum

(2-10 keV) in case of:

- i) reflection-dominated scenario
- ii) absorption-dominated scenario

Optional:

- 2a) Expand best-fit down to 0.4 keV
- 2b) Obtain a best-fit model for the high state spectrum
- 2c) Or try <u>one</u> of the physical models for either the relativistic FeK line, or the relativistic reflection (tbc) or the absorption/wind model (tbc)

Low state

- 1) Extract image, light-curve and spectrum of the source, and fit the "hard" X-ray (E=2-10 keV) continuum of pn (only)
 - 1a) Using a power-law (PL) model plus one Gaussian emission line
 - 1b) Using a PL model plus a reflection continuum plus (one or two) Gaussian FeK emission lines.
 - 1c) Using a PL model plus 1 partially covering models, either neutral or ionized, plus (one or two) Gaussian FeK emission lines.

Optional

- 2a) Expand best-fit down to 0.4 keV
- 2b) Obtain a best-fit model (2-10 keV) for the high state spectrum, to compare to the low state spectrum
- 2c) Or try <u>one</u> of the physical models for either the relativistic FeK line, or the relativistic reflection or the absorption/wind model

H0557-385

References:

Longinotti et al. 2009 (http://arxiv.org/abs/0810.0918) Coffey et al. 2014 (http://arxiv.org/abs/1406.7129)

Source INFOs:

Classification: Seyfert 1.2

Z=0.03387 (10154 km/s)

 $M=5\times10^7 M_{\odot}$

Nhgal=3.7x10²⁰ cm⁻² (Kalberla et al. 2005)