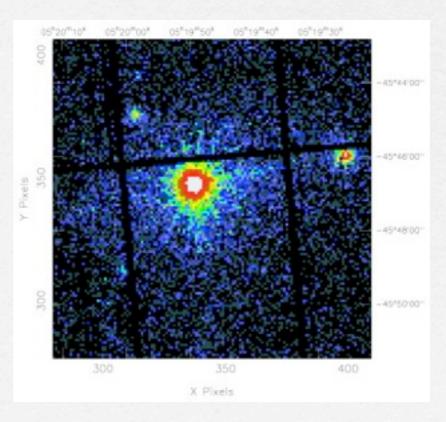

Pictor A with XMM

Pic A is a nearby (z =0.035) radio galaxy optically classified as broad-line radio galaxy. It is an isolated source.


It is a double-lobed radio source with a FR II morphology

VLA map 20cm

XMM/pn image.

0.2-12 keV

Analysis of the XMM-Newton Observation: nucleus and lobe

Observation: 2005 January 14

Exposure time: ~50 ksec

The analysis has to be performed using:

MOS1 (for the lobe)

MOS2 (for the nucleus).

- Superposition of the X-ray and radio images (DS9) to individuate the region to be analyzed
- Nucleus: extraction of the spectrum and production of the .rmf and .arf files (SAS). Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity.
- Lobe (east): extraction of the spectrum/spectra and production of the .rmf and .arf files (SAS). Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity
- OPTIONAL: Determination of the magnetic field in the (eastern) lobe
- Power point presentation of the results (+ lab experience)

3.1.3 MAGNETIC FIELD FROM COMPARISON WITH X RAYS An independent method of obtaining information about the distribution of magnetic field strengths in extended sources is based on the fact that the same relativistic electrons that produce the radio synchrotron emission will scatter photons of the microwave background to X rays. The ratio between radio and X-ray surface brightness depends on the magnetic field strength (Perola & Reinhardt 1972, Bridle & Feldman 1972, Costain et al. 1972, Harris & Romanishin 1974, Harris & Grindlay 1979). The process is reviewed by Gursky & Schwartz (1977).

The expression for the resultant magnetic field strength given by Harris & Grindlay (1979) can be approximated to within about $\pm 10\%$ between $-0.6 > \alpha > -1.4$ and rewritten as

$$B = \{6.6 \times 10^{-40} (4800)^{\alpha} (1+z)^{3-\alpha} F_{R} F_{x}^{-1} v_{R}^{-\alpha} E_{x}^{\alpha}\}^{1/1-\alpha} \text{ gauss}$$
 (5)

where F_R is the radio flux density (in Jy) at frequency v_R (GHz), F_x is the X-ray flux (erg cm⁻² Hz⁻¹) at energy E_x (keV), α is the spectral index ($F_R \propto v_R^{\alpha}$), and z is the redshift.

References

Grandi et al. 2003 ApJ, 586, 123

Perley et al. 1997 A&A 328,12

Migliori et al. 2007, ApJ 668, 203

Miley G. 1980, ARAA, 18, 165