Test and calibration of hard X-ray detectors

IASF Bologna / INAF

AL

Bologna, 30 Novembre 2015

OBIETTIVO

Calibrazione in energia di un rivelatore utilizzato nella banda energetica dei raggi X duri /gamma molli.

Rivelatori a semiconduttore di CdTe/CdZnTe e HPGe impiegati in missioni spaziali.

Studio comparativo delle prestazioni di tali rivelatori in termini di Charge Collection Efficiency e risoluzione energetica

SCOPO DELLA CALIBRAZIONE

I raggi X e gamma emessi da sorgenti celesti vengono rivelati con dei sensori che prima di essere lanciati nello spazio devono essere calibrati a terra.

La calibrazione in energia permette l'associazione canale-energia.

ISGRI/INTEGRAL: CdTe

SPI/INTEGRAL: HPGe

Range Energetico: 20 keV - 8 MeV
19 rivelatori esagonali di germanio iperpuro
Temperatura criogenica: 85 K (-188 °C)
Massa: 1300 chilogrammi

Focal plane detector/NuSTAR: CZT

IN CHE COSA CONSISTE

- Illustrazione della catena spettroscopica e delle sue componenti.
- Analisi del segnale in uscita dall'amplificatore tramite l'impiego di un oscilloscopio.
- Acquisizione dello spettro di sorgenti di calibrazione: ²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co e ¹³⁷Cs.
- Analisi dello spettro.
- Calibrazione in energia.
- · Calcolo della risoluzione energetica.
- Studio della risposta di un rivelatore a stato solido.

INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA

- Le sorgenti radioattive sono nuclei instabili che decadono emettendo radiazioni di diverso tipo, tra cui i raggi gamma.
- Le sostanze sono sempre trasparenti ai raggi gamma anche se in misura molto diversa a secondo della energia dei fotoni e della sostanza assorbente.
- INTERAZIONE DELLE RADIAZIONI FOTONICHE
- I fotoni X e gamma sono radiazioni che hanno la stessa natura elettromagnetica della luce e delle onde radio. Differiscono per la frequenza e per l'origine, nucleare per i gamma, atomica per i raggi X.
- I raggi gamma generalmente hanno energie dell'ordine dei MeV, i raggi X hanno energie comprese fra 0.1 keV e qualche centinaia di keV.
- Interagendo con la materia i raggi X e gamma producono **ionizzazione indiretta o secondaria**. Gli elettroni secondari prodotti dalla interazione fotonica primaria sono i maggiori responsabili della ionizzazione della materia.

INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA (2)

L'interazione può riguardare l'intero atomo (effetto **Fotoelettrico**), o un singolo elettrone atomico (effetto **Compton** e produzione di coppie nel campo elettronico) oppure il nucleo atomico (**Produzione di coppie** nel campo nucleare).

Le tre interazioni principali dominano in tre regioni diverse definite da:

- energia dei fotoni incidenti
- numero atomico del materiale assorbitore

I principali meccanismi di interazione

> Effetto fotoelettrico : il fotone strappa un elettrone dalle orbite più interne.

 $E_{p_{-}} = hv - E_{h}$

I principali meccanismi di interazione

Effetto Compton : urto diretto fotone X-elettrone libero. Il fotone in genere non viene assorbito ma diffuso anche all'indietro.
 Creazione di coppie : ad energie superiori ad 1 MeV è possibile la creazione della coppia elettrone-positrone.

 $\Delta \lambda = \frac{h}{mc} (1 - \cos \vartheta)$

Rivelazione con rivelatori a semiconduttore per raggi X duri

- Un fotone X o gamma di energia E, che attraversa il volume sensibile di un rivelatore a semiconduttore, produce i processi di assorbimento fotoelettrico, diffusione Compton e creazione di coppie, elevando elettroni dalla banda di valenza a quella di conduzione (a).
- Si formano, così, coppie elettrone-lacuna che vengono derivate ai rispettivi elettrodi grazie all'azione di un campo elettrico applicato (b): il teorema di Ramo stabilisce che un portatore che derivi per un tratto dx verso il proprio elettrodo di raccolta origini un impulso corrispondente ad una carica indotta dq (c).
- Il numero delle coppie generate dal fotone è: N= E_{γ}/ε dove ε è l'energia di ionizzazione, cioè l'energia media spesa dal fotone primario per creare una coppia elettrone-lacuna.
- L'impulso viene acquisito dall'elettronica di lettura ed inviato ad un analizzatore multicanale.

Rivelazione con rivelatori a stato solido per raggi X duri (2)

SCHEMI DI DECADIMENTO

* Come esempio consideriamo il ¹³⁷Cs che decade nel ¹³⁷Ba stabile, t1/2 di 30 anni, tramite decadimento β -: il decadimento può essere diretto tramite l'emissione di un β - oppure può avvenire in cascata tramite un β - e un raggio γ di energia pari a 661.6 keV (raggi X caratteristici del ¹³⁷Ba).

APPARATO SPERIMENTALE

- Sorgenti collimate di calibrazione
- Collimatore di Piombo (ϕ = 3.5mm)
- Rivelatore di CZT/HPGe
- Elettronica di lettura

Elettronica di lettura standard

- Charge sensitive preamplifirer: conversione dell'impulso di carica raccolto agli elettrodi all'interno del rivelatore in un segnale analogico di tensione con guadagno generalmente unitario.
- Shaper amplifier: formatura gaussiana e amplificazione del segnale di tensione.
- Analog Digital Converter: conversione del segnale da analogico a digitale.
 - Multi channel Analyzer: software dedicato alla acquisizione, visualizzazione e analisi dello spettro energetico.

Principio di funzionamento della digitalizzazione dei segnali

Da analogico a digitale da continuo a discreto 1) Discretizzazione del tempo: il campionamento

Campionamento: misura dell'ampiezza del segnale a intervalli regolari di tempo ΔT (tempo di campionamento o sampling time)

Principio di funzionamento della digitalizzazione dei segnali (2)

2) Discretizzazione della tensione: la conversione Analogico-Digitale

2) conversione nel FLASH ADC (Analog to Digital Converter)

Materiali Circostanti

 La presenza dei materiali circostanti il rivelatore puo` avere influenza sulla sua risposta. Un esempio è riportato nello spettro di fianco.

Figure 10.6 Influence of surrounding materials on detector response. In addition to the expected spectrum (shown as a dashed line), the representative histories shown at the top lead to the indicated corresponding features in the response function.

Risoluzione energetica

- > Uno spettro ideale prodotto da un fotone che ha ceduto tutta la sua energia E_{γ} = hv al rivelatore dovrebbe essere una riga sottile centrata intorno al valore hv.
- In realtà lo spettro presenta un allargamento della riga spettrale, misurato dalla risoluzione energetica. La sua definizione formale è data dal rapporto tra la larghezza totale a metà del massimo del fotopicco (Full Width at Half Maximum) e l'energia E sulla quale è localizzato il centroide del picco:

$$R = \frac{\Delta E(FWHM)}{E} = \frac{\Delta c}{c_0}$$

dove Δc è numero di canali nel FWHM e c₀ il canale del centroide del picco.

Risoluzione energetica (2)

> In un rivelatore a semiconduttore l'assorbimento di un fotone di energia E crea un numero di coppie elettrone-lacuna, entro il volume attivo del rivelatore, dato da N = E/ϵ (ϵ = energia di ionizzazione).

> La generazione dei portatori di carica è un fenomeno di tipo quantico, quindi, soggetto a fluttuazioni casuali. Se supponiamo che ogni evento ionizzante segua la statistica di Poisson, si ha che in media vengono generati N portatori di informazione, con una fluttuazione caratterizzata da una deviazione standard pari a:

$$\sigma = k\sqrt{N}$$
 Reprised the Reprised to the Repr

≻ Ampiezza H₀=kN

Risoluzione energetica (3)

➢ In realtà la risoluzione energetica misurata è più piccola di quella calcolata dall'equazione precedente, poiché le fluttuazioni statistiche osservate sono minori di quelle teoriche. Questo significa che non si può applicare la semplice statistica poissoniana dato che gli eventi ionizzanti non sono completamente indipendenti tra loro.

> Il fattore di Fano F, introdotto per quantificare la deviazione delle fluttuazioni statistiche osservate nel numero di portatori di carica dalla statistica di Poisson è funzione di tutti i processi fondamentali che portano ad un trasferimento d'energia nel rivelatore, incluse le reazioni che non causano ionizzazione come le eccitazioni dei fononi, ecc.

> La risoluzione energetica è:

$$R_{stat} = 2.35 \sqrt{\frac{F}{N}}$$

>Per i semiconduttori, compresi il CdTe e il CZT, il fattore di Fano assume un valore di circa 0.1 ÷0.3.

Efficienza di raccolta di carica

L'efficienza di raccolta di carica è definita:

$$\eta = \frac{Q}{Q_0} = \frac{N}{N_0}$$

dove Q_0 è la carica totale generata dal fotone nel volume sensibile del rivelatore, corrispondente a N_0 coppie elettrone-lacuna, mentre Q è la carica indotta agli elettrodi.

L'efficienza di raccolta di carica dipende dal punto di interazione della radiazione incidente (relazione di Hecht).

Fenomeni di trapping

La dipendenza della CCE dalla posizione d'interazione modifica la forma dello spettro in generale ed in particolare del fotopicco.

Picchi di escape

Fuga di alcuni fotoni di fluorescenza dal volume attivo.

L'energia rilasciata nel rivelatore è pari alla differenza fra l'energia del fotone incidente e quella del fotone di fluorescenza.

Efficienza di rivelazione (teorica)

Un fascio di intensità I₀, entrando in un mezzo subisce un'attenuazione che è proporzionale al tratto percorso ed all'intensita' I nel punto x:

 $I = I_0 exp(-\mu x)$

Probabilità che un fotone gamma incidente depositi la sua energia nel rivelatore:

Efficienza = $1 - exp(-\mu x)$

> Dipende dall'energia, dal materiale e dallo spessore

Per effettuare la calibrazione in energia:

- ✓acquisiamo uno spettro di ⁵⁷Co per XX minuti;
- ✓acquisiamo uno spettro di ²⁴¹Am per XX minuti;
- ✓acquisiamo uno spettro di ¹⁰⁹Cd per XX minuti;
- ✓ determiniamo la retta di calibrazione: grafico dell'energia dei fotopicchi in funzione del canale.

OUTPUT DEI DATI

LO SPETTRO DEL ¹³⁷Cs

- Possiamo notare presenti nello spettro:
- il picco fotoelettrico
- la spalla Compton
- il picco di backscattering

LO SPETTRO DEL ¹³⁷Cs

Rivelatori per l'esperienza di laboratorio

✓ Rivelatore di HPGe raffreddato con azoto liquido

✓ Rivelatore di CZT sensibile alla posizione

✓ Rivelatore di CZT monoeletrodo

Rivelatore di HPGe

Serial Numbers
IGP210/1429
Information
3 hours
ensions
200
16
10
Be
ormance
180 eV- 1 MeV
480-750 eV
P-Type High-Purity
Germanium
Planar

Rivelatore di HPGe

Studio della risposta di un rivelatore di HPGe raffreddato con azoto liquido:

- ✓ acquisizione degli spettri energetici di ⁵⁷Co, ²⁴¹Am e ¹⁰⁹Cd;
- ✓ Calibrazione e analisi della risposta spettroscopica.

CZT multipixel

- □ Crystal size = ~10 mm x 10 mm
- \Box Number of pixels = 16
- \Box Thickness = 5 mm
- □ Pixel size = 1.8 mm x 1.8 mm
- □ Pitch = 2 mm
- Guard ring = 0.5 mm
- □ Bias Voltage = -520 V

0	4	8	14					
2	6	10	12					
1	5	9	15					
3	7	11	13					

CZT monoelettrodo

Crystal size = ~4 mm × 4 mm
Au Metallization
Thickness = 2 mm
Bias Voltage = 100V/mm

Risposta del multipixel: Small pixel effect

- ✓ Catodo monoelettrodo
- Anodo segmentato in una matrice di pixel di area ridotta per diminuire la capacità dell'anodo di raccolta con conseguente riduzione del rumore elettronico e miglioramento della risoluzione energetica
- ✓ Raccolta di carica dipende principalmente dalla carica indotta dagli elettroni all'anodo (riduzione del contributo delle lacune al segnale)

Software d'acquisizione

😿 Maes	stro - Am.Chn		The Party of the P		-		A COLUMN T	and the same	THE OWNER.	
File A	cquire Calculate Service	es ROI	Display Window							
	Start	Alt+1	1K* Log A 832	🗩 🔎 🔶 👯 🛛 Buffer		•				
	Stop	Alt+2								Pulse Ht. Analysis
685	Clear	Alt+3								Start: 12:02:19 PM
	Copy to Buffer	Alt+5								20/02/2013 Real: 102.95
	List Mode									Live: 100.00
	Download Spectra									Dead: 2.78 %
	View ZDT Corrected	F3								
	MCB Properties									Le Le
										Peak
								PHA		🚹 Info 🟦
										© ORTEC 7:46:57 PM Fii 27/11/2015
11 <u>14</u>	4 4 - E									
Marker:	517 = 517.00	keV	2 Cnts							
	2 2 2 2 M	are clic n	per inserire le note							
Diapositi	va 38 di 39 🛛 "Pastelli" 🔇	5 Italiano	o (Italia)						🖪 III 🖓 100% 😑 🗕	

Software d'acquisizione

		2/22/2013 Real: 202.40
		Dead % Preset Limits Real: Live: 200.00 Peak: Intg Unct: % Mda
	Properties for: ORTEC DSPEC LF X About Status Presets MDA Preset Amplifier Amplifier 2 ADC Stabilizer High Votage Gate Conversion Gain 2048 1 Anticoincidence Vulper Level Disc 10 1 Upper Level Disc 2047 1 Real Time Live Time Count Rate 260 Close Close Close	ROI Reak Library © 0RTEC 4-04:44 PM Fri 2/22/2013

Software d'acquisizione

	シ●◆世』0001 ORTEC DSPEC LF	•	Pulse Ht. Analysis
			Start: 3:59:06 PM 2/22/2013 Real: 202.40
		AHC]	Live: 200.00 Dead: %
			Real: Live: 200.00
			Peak: Intg: Unct: %
		Properties for: ORTEC DSPEC LF	Peak 🖈
		Amplifier Amplifier 2 ADC Stabilizer High Voltage About Status Presets MDA Preset	© ORTEC 4:06:05 PM
		Real Time (s)	Fri 2/22/2013
		200.00 Live Time (s) Start Chan: 0	
		ROI Integral (cnts) Width: 1	
		Cverflow	
		Close	
Marker: 31 = 4.98 keV 15 Cnts			

Software d'acquisizione: analisi

	Settings Calibration	Log A 2048 D	Buffer	-				
🐼 Buffer(8) -	List Data Range						Start: 4:26:06 PM	X
	Peak Search						2/19/2013 Root: 924.50	Y
	Peak Info					PHA	Live: 900.00	
	Input Count Rate						Dead: 3.69 %	
	Sum						ROI	
	Strip			4	-			
					a second s	in the balance of the second	Del	
							Peak	
							🚹 Info 🟦	
							1 Library	
							© ORTEC	
							6:48:07 PM Wed 2/20/2013	
4arker: 760 =	760.00 keV	4,311 Cnts						

Software d'acquisizione: analisi 👿 Maestro - Co57-2000V.Chn _ 0 × File Acquire Calculate Services ROI Display Window Marking ► Log A 2048 € 🗩 🕁 👪 Buffer Settings... -Calibration... -Pulse Ht. Analysis-🐼 Buffer(12) List Data Range... Start: 4:26:06 PM 2/19/2013 Peak Search 934.50 Real: Peak Info Live: 900.00 3.69 % Input Count Rate Dead: Sum -ROI-Smooth Ins 1 Strip... Del Peak Peak: 759.99 = 122.00 keV 🐒 Info 🚅 FWHM: 0.44 FW(1/5)M: 0.56 Library: Co-57 (Cobalt) at 122.06 ; 10.77 cA Gross Area: 18627 Net Area: 8298 ±116 🚹 Library 🚮 Gross/Net Count Rate: 20.70 / 9.22 cps © ORTEC 7:03:50 PM Wed 2/20/2013 Marker: 762 = 122.32 keV 1.773 Cnts

Software d'acquisizione: analisi

😸 Maestro - Am.Chn			0000000	station and	- Constanting	1.00		
File Acquire Calculate Services	ROI Display Wir	ndow						
	• Off	F2 or Alt+O	🔎 🔶 🔛 🛛 Buffer	•				
🐼 Buffer(2) - Am.Chn	Mark UnMark	F2 or Alt+M F2 or Alt+U						Pulse Ht. Analysis Start: 12:02:19 PM
	Mark Peak	Insert						Real: 102.86
	Clear Clear All	Delete						Live: 100.00 Dead: 2.78 %
	Auto Clear							ROI
	Save File Recall File							
								Peak
								Library 🚮
								© ORTEC 7:45:00 PM Fri 27/11/2015
1								
1 1 1								
Marker: 517 = 517.00 ke ^v	V 20	ints						
	clic ner inserire	e le note						
apositiva 38 di 39 🛛 "Pastelli" 🛛 🕉	Italiano (Italia)						日 部 豆 100%	

Radiation Decay

Radiation Decay V4										
File Edit Action	File Edit Action Search Data Options Help									
📰 Periodic Table 🛛 📰 Nuclides Table 🕅 Decay Calculations 🗮 Decay Series										
Sort by: Atomi	Sort by: Atomic Name Properties Radionuclides									
Actinium	Ac	*	Am-231	A 0.41						
Aluminum	Al		Am-232	AM-241						
Americium	Am		Am-233	Participation of the second burners of the						
Antimony	Sb		Am-234	X-Ray Emission	s:					
Argon	Ar		Am-235							
Arsenic	As		Am-236	Energy	Intensity	Assignment				
Astatine	At		Am-237	(keV)	(%)					
Barium	Ba	Ξ	Am-238	117.075						
Berkelium	Bk		Am-239	117.875	0.0004	Np Kb4				
Beryllium	Be		Am-240	117.463	0.0011	Np Kb2				
Bismuth	Bi		Am-241	114.912	0.0001	Np Kb5				
Bohrium	Bh		Am-242	114.234	0.0028	Np Kb1				
Boron	в		Am-243	113.303	0.0015	Np Kb3				
Bromine	Br		Am-244	101.059	0.0120	No Kal				
Cadmium	Cd		Am-245	97 069	0 0080	No Ka2				
Calcium	Ca		Am-246	96.242	0.0000	Np Ka3				
Californium	Cf		Am-247	90.242	0.0000	Np Kas				
Carbon	С		Am-248	21.491	0.2900	ир где				
Cerium	Ce		Am-249	21.342	0.5900	Np Lg3				
Cesium	Cs		Am-237m	21.099	0.6500	Np Lg2				
Chlorine	Cl		Am-238m	20.784	1.3900	Np Lg1				
Chromium	Cr		Am-239m	17.992	1.3700	Np Lb3				
Cobalt	Co		Am-241m	17.751	5.7000	Np Lb1				
Copper	Cu		Am-242m	17.505	0.6500	Np Lb5				
Curium	Cm		Am-243m	17.061	1.5000	Np Lb4				
Dubnium	Db		Am-244m	16 816	2 5000	Np Lb2				
Dysprosium	Dy		Am-245m	16 109	0 1840	Np 1b2				
Einsteinium	10		Am-246m	15.109	0.1040	Np LD0				
Element 111	11		Am-242m2	15.001	0.1550	ир ци				
Element-III Erbirm	11 P.		Am-240m2	13.946	9.6000	мр цаг				
Europium	Er			13.761	1.0700	Np La2				
Fermium	Fm			11.871	0.6600	Np Ll				
Fluorine	F									
Francium	Fr									
Gadolinium	Gđ									
Gallium	Ga									
Germanium	Ge			•		•				
Gold	Au			\ Properties / Alphas / Betas	: / Gammas / X-Rays / Re	ef: /				
		Ŧ	I	((

Ci vediamo in laboratorio

