The foundamental parameters of X-ray telescopes

What happens

M. Dadina, C. Vignali

$$
\begin{aligned}
& \text {.. a X-ray } \\
& \text { source... }
\end{aligned}
$$

.mirrors,
centrators

INPUTS
Source photons+
Mirrors response+
Detector response+
All kinds of
Backgrounds

Take into account telescope response... and remaining bgds

Remove "some" backgrounds and malfunctioning
..since the birth of X-ray Astronomy in 1962, improvements were carried out in terms of
sensitivity, angular resolution, energy resolution and energy bandpass

The Golden age of X-ray Astronomy

XMM-Newton

Chandra

Suzaku

Final note......

Sensitivity:

Reducing the B.

Increasing the collecting/effective Area

S/N increases......
(....but sometime also the bgd increases)
the ESA (XMM-Newton) way

Chandra: very good spatial resolution and low backgroud XMM-Newton: large effective area but worse PSF and higher background

Angular resolution
 (PSF FWHM, on-axis vs. off-axis, ...)

Mirrors and PSF

Point Spread Function (PSF) - describes the response of an imaging system to a point source or point object.

HEW (PSF), FWHM (PSF) = angular resolution
PSF $=$ function of (x, y) or (r, ϑ).

Chandra

High Resolution Mirror Assembly (HRMA): On-axis PSF

Encircled energy vs. radius at different energies

Radius encompassing NN\% of the counts as a function of the energy

On-axis PSF size and shape

High Resolution Mirror Assembly (HRMA): Off-axis PSF

CDF-N 2Ms exposure

Resulting image on the focal plane of Chandra-ACIS

XMM-Newton: the EPIC on-axis PSF

Mirror module	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Instr. chain ${ }^{a}$	pn	MOS-1+RGS-1	MOS-2+RGS-2
	orbit/ground	orbit/ground	orbit/ground
$F W H M\left[{ }^{\prime \prime}\right]$	$<12.5^{b} / 6.6$	$4.3 / 6.0$	$4.4 / 4.5$
$H E W\left[{ }^{\prime \prime}\right]$	$15.2 / 15.1$	$13.8 / 13.6$	$13.0 / 12.8$

PSF FWHM higher than in Chandra but much larger effective area Background (and confusion limit) can be an issue

XMM-Newton: the EPIC on-axis PSF

Encircled energy vs. radius at different energies for the MOS1-2

Encircled energy vs. radius at different energies for the pn

XMM-Newton: the EPIC off-axis PSF

90% radius (radius encompassing 90% of the incoming photons) vs. off-axis angle for the MOS1-2 at different energies
90% radius vs. off-axis angle for the pn at different energies

Chandra and XMM-Newton
 (telescopes and CCD detectors)

Chandra = angular resolution

Only four, robust shells
High-quality of shell production to allow <arcsec on-axis angular resolution (the best so far in X-rays)

To focus X-rays, angles < critical angle for total reflection are needed

$$
\vartheta_{c r i t} \propto \frac{\sqrt{\rho}}{E}
$$

High Resolution Mirror Assembly (HRMA)

Ottica Wolter Type-I
Mirror diameters:
1.23, 0.99, 0.870 .65 m
Mirror lengths: 84 cm
HRMA mass: 1500 kg
Focal length: 10 m
PSF FWHM: 0.5"

Chandra focal-plane detectors: CCDs

XMM-Newton = large effective area

3 modules, 58 shells

XMM-Newton: all instruments at work simultaneously

Effective area

(and its dependencies)

Mirrors and Effective Area

- Effective area - it is the area "encoded" in the ARF [cm²]
- Geometric area - "cross-section" of the telescope
- Reflectivity - fraction of photons reflected by the mirros (function of energy)
- Vignetting - quantifies the fraction of "lost" photons (function of the offaxis angle from the optical axis, ϑ, and the energy of the incoming photon)
- Quantum Efficiency - fraction of incident photons on the detector actually registered by the detector. In the case of CCD, QE=f(energy, position on the detector)

Chandra High Resolution Mirror Assembly (HRMA): Effective Area

Effective area vs. Energy

Effective area vs. off-axis angle at different energies

Chandra: Effective area

Chandra: vignetting

Ratio of the off-axis vs. on-axis counts at different off-axis angles

Hard X-ray photons are more difficult to focus \rightarrow Vignetting

Chandra: Quantum efficiency

XMM-Newton: mirror effective (geometric) area

XMM-Newton: effective area

XMM-Newton: vignetting

Strong vignetting (as expected) for high-energy photons, partly compensated by the large effective area (e.g., wrt. Chandra)

XMM-Newton: quantum efficiency

Strong decrease in the QE above 10 keV , where also the effective area due to the mirrors has a significant decrease

XMM-Newton: effective area dependence on the filter choice

To avoid contamination from bright, soft objects (e.g., stars), a medium/thick filter is adopted

You willl account for all this information

 creating a file named arf (ancillary response file)Chandra

XMM-Newton

Spectral (energy) resolution

Chandra: energy resolution
Typical CCD resolution $100-150 \mathrm{eV}$ at 6 keV
$\Delta \mathrm{E}(\mathrm{FWHM}) / \mathrm{E} \propto \mathrm{E}^{-1 / 2}(\mathrm{E}$ in keV$)$

XMM-Newton: energy resolution

You willl account for all this information creating a file named rmf (redistribution matrix file)

Two multilayer coded optics, CZT detectors, 10-m focal length

Grazing incidence optics

Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI)	$\sim 0.5 \mathrm{mCrab}$ $(20-100 \mathrm{keV})$ with $>\mathrm{Ms}$ exposures
Swift	$\sim 0.8 \mathrm{mCrab}$ $(15-150 \mathrm{keV})$ with $>\mathrm{Ms}$ exposures
NuSTAR	$1 \mu \mathrm{Crab}$ $(10-40 \mathrm{keV})$ in 1 Ms

Sensitivity comparison

1 Ms Sensitivity

$3.2 \times 10^{-15} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s}(6-10 \mathrm{keV})$
1.4×10^{-14}
($10-30 \mathrm{keV}$)

Imaging

HPD	$58 "$
FWHM	$16^{\prime \prime}$
Localization	$2 "$ (1-sigma)

Timing

relative 100 microsec absolute 3 msec

Spectral response energy range $3-79 \mathrm{keV}$ threshold $\quad 2.0 \mathrm{keV}$ $\Delta \mathrm{E} @ 6 \mathrm{keV} \quad 0.4 \mathrm{keV}$ FWHM $\Delta \mathrm{E} @ 60 \mathrm{keV} 1.0 \mathrm{keV}$ FWHM

Target of Opportunity

$$
\begin{aligned}
& \text { response }<24 \mathrm{hr} \text { (reqmt) } \\
& \text { typical } \quad 6-8 \text { hours } \\
& 80 \% \text { sky accessibility }
\end{aligned}
$$

Focal Plane Detector

Focal Plane Parameter	Value
Detector Anode	32 pixel $\times 32$ pixel
Pixel Size	$0.6 \mathrm{~mm} / 12.3^{\prime \prime}$
Focal Plane Size	$12^{\prime} \times 12^{\prime}$
Energy threshold	2 keV
Time resolution	2 ms
Dead time fraction (at threshold)	5%
Max processing rate	400 events s $^{-1}$ module ${ }^{-1}$
Max. flux meas. rate	10^{4} counts s $^{-1}$

Number of FPDs: 2
Material: CdZnTe
1 FPD $\Rightarrow 4$ detectors (2×2 array) Detector area $=2 \times 2 \mathrm{~cm}$ Detector thickness $=2 \mathrm{~mm}$

Focal Plane Detector

${ }^{57}$ Co spectrum of one CZT pixel (gamma-ray lines at $6.40,7.06,14.4,122$ and 136 keV).

The 146 keV peak is produced by the test pulser.

Operating settings: Temperature $=278 \mathrm{~K}$ High voltage $=-450 \mathrm{~V}$ Acquisition time $=$ one day

Energy resolution:
@ $14.4 \mathrm{keV}=0.5 \mathrm{keV}$
@ $122 \mathrm{keV}=0.9 \mathrm{keV}$

Cassiopeia A

Red: NuSTARFe
Blue: NuSTAR $10-25 \mathrm{keV}$ Green: Chandra $4-6 \mathrm{keV}$

