

The foundamental parameters of X-ray telescopes

What happens

.. a X-ray source...

INPUTS

Source photons+ Mirrors response+ Detector response All kinds of Background s

OUTPUTS

Images Light Curves Spectra

limators tes..

n board

Take into account telescope response... and remaining bgds

Source photons+ Mirrors response+ Detector response+ All kinds of Background s

ectors /licrocal., etc.) Remove "some" backgrounds and malfunctioning

things to do

..since the birth of X-ray Astronomy in 1962, improvements were carried out in terms of sensitivity, angular resolution, energy resolution and energy bandpass

The Golden age of X-ray Astronomy

XMM-Newton

Suzaku

Final note.....

Sensitivity:

S=F x A_{eff}

S/N increases.....

(....but sometime also the bgd increases)

the ESA (XMM-Newton) way

the NASA (Chandra) way...

Chandra: very good spatial resolution and low backgroud

XMM-Newton: large effective area but worse PSF and higher background

Angular resolution

(PSF FWHM, on-axis vs. off-axis, ...)

Mirrors and PSF

Point Spread Function (PSF) – describes the response of an imaging system to a point source or point object.

HEW (PSF), FWHM (PSF) = angular resolution

PSF = function of (x,y) or (r, ϑ) .

Chandra

High Resolution Mirror Assembly (HRMA): On-axis PSF

Encircled energy vs. radius at different energies

Radius encompassing NN% of the counts as a function of the energy

On-axis PSF size and shape

High Resolution Mirror Assembly (HRMA): Off-axis PSF

CDF-N 2Ms exposure

Resulting image on the focal plane of *Chandra*-ACIS

XMM-Newton: the EPIC on-axis PSF

110 arcsec

spider-like pattern due to the support of the Wolter I mirrors

Mirror module	2	3	4
Instr. chain ^a	pn	MOS-1+RGS-1	MOS-2+RGS-2
	orbit/ground	orbit/ground	orbit/ground
FWHM ["]	$< 12.5^{b}/6.6$	4.3/6.0	4.4/4.5
HEW["]	15.2/15.1	13.8/13.6	13.0/12.8

PSF FWHM higher than in *Chandra* but much larger effective area Background (and confusion limit) can be an issue

XMM-Newton: the EPIC on-axis PSF

Encircled energy vs. radius at different energies for the MOS1-2

Encircled energy vs. radius at different energies for the pn

XMM-Newton: the EPIC off-axis PSF

90% radius (radius encompassing 90% of the incoming photons) vs. off-axis angle for the MOS1-2 at different energies

90% radius vs. off-axis angle for the pn at different energies

Chandra and XMM-Newton

(telescopes and CCD detectors)

Chandra = angular resolution

Only four, robust shells
High-quality of shell production
to allow <arcsec on-axis angular
resolution (the best so far in X-rays)

To focus X-rays, angles < critical angle for total reflection are needed

$$\vartheta_{crit} \propto \frac{\sqrt{
ho}}{E}$$

High Resolution Mirror Assembly (HRMA)

Ottica Wolter Type-I

Mirror diameters: 1.23, 0.99, 0.87 0.65 m

Mirror lengths: 84 cm

HRMA mass: 1500 kg

Focal length: 10 m

PSF FWHM: 0.5"

Chandra focal-plane detectors: CCDs

XMM-*Newton* = large effective area

3 modules, 58 shells

XMM-Newton: all instruments at work simultaneously

xmm observatory system

50% Non Dispersed X-rays

CCD Camera At Prime Focus

Grating Stack

Focal Length 7500 MM

Full incident photons to the pn CCD, ≈50% to the MOS1-2, the rest to the grating spectrometers (RGS)

Effective area

(and its dependencies)

Mirrors and Effective Area

- **Effective area** it is the area "encoded" in the ARF [cm²]
- **Geometric area** "cross-section" of the telescope
- Reflectivity fraction of photons reflected by the mirros (function of energy)
- **Vignetting** quantifies the fraction of "lost" photons (function of the offaxis angle from the optical axis, ϑ , and the energy of the incoming photon)
- Quantum Efficiency fraction of incident photons on the detector actually registered by the detector. In the case of CCD, QE=f(energy, position on the detector)

Chandra High Resolution Mirror Assembly (HRMA): Effective Area

Chandra: Effective area

Chandra: vignetting

Ratio of the off-axis vs. on-axis counts at different off-axis angles

Hard X-ray photons are more difficult to focus

→ Vignetting

Chandra: Quantum efficiency

XMM-Newton: mirror effective (geometric) area

XMM-Newton: effective area

XMM-Newton: vignetting

Strong vignetting (as expected) for high-energy photons, partly compensated by the large effective area (e.g., wrt. *Chandra*)

XMM-Newton: quantum efficiency

Strong decrease in the QE above 10 keV, where also the effective area due to the mirrors has a significant decrease

XMM-Newton: effective area dependence on the filter choice

To avoid contamination from bright, soft objects (e.g., stars), a medium/thick filter is adopted

You will account for all this information creating a file named arf (ancillary response file)

Chandra

XMM-Newton

$$artheta_{crit} \propto rac{\sqrt{
ho}}{E}$$

Spectral (energy) resolution

Typical CCD resolution 100-150 eV at 6 keV

 $\Delta E(FWHM)/E \propto E^{-1/2} (E in keV)$

XMM-Newton: energy resolution

Chandra: energy resolution

You will account for all this information creating a file named rmf (redistribution matrix file)

NuSTAR

INTEGRAL, Swift BAT

NuSTAR

Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI)	~0.5 mCrab (20-100 keV) with >Ms exposures
Swift (BAT)	~0.8 mCrab (15-150 keV) with >Ms exposures
NuSTAR	1 μCrab (10-40 keV) in 1 Ms

Sensitivity comparison

1 Ms Sensitivity

$$3.2 \times 10^{-15} \text{ erg/cm}^2/\text{s} (6 - 10 \text{ keV})$$

 1.4×10^{-14} $(10 - 30 \text{ keV})$

Timing

relative 100 microsec absolute 3 msec

Imaging

HPD 58"
FWHM 16"
Localization 2" (1-sigma)

Spectral response

energy range 3-79 keV threshold 2.0 keV ΔE @ 6 keV 0.4 keV FWHM ΔE @ 60 keV 1.0 keV FWHM

Field of View

FWZI 12.5' x 12.5' FWHI 10' @ 10 keV 8' @ 40 keV 6' @ 68 keV

Target of Opportunity

response <24 hr (reqmt) typical 6-8 hours 80% sky accessibility

Focal Plane Detector

Focal Plane Parameter	Value	
Detector Anode	32 pixel x 32 pixel	
Pixel Size	0.6 mm/12.3"	
Focal Plane Size	12' x 12'	
Energy threshold	2 keV	
Time resolution	2ms	
Dead time fraction (at threshold)	5%	
Max processing rate	400 events s ⁻¹ module ⁻¹	
Max. flux meas. rate	10 ⁴ counts s ⁻¹	

Number of FPDs: 2 Material: CdZnTe

1 FPD ⇒ 4 detectors (2x2 array)

Detector area =2 x 2 cm

Detector thickness = 2 mm

Focal Plane Detector

⁵⁷Co spectrum of one CZT pixel (gamma-ray lines at 6.40, 7.06, 14.4, 122 and 136 keV).

The 146 keV peak is produced by the test pulser.

Operating settings: Temperature = 278 K High voltage= -450 V

Acquisition time = one day

Energy resolution:

@ 14.4 keV = 0.5 keV

@ 122 keV = 0.9 keV

Sgr A*

Cassiopeia A

Red: NuSTAR Fe

Blue: NuSTAR 10-25 keV Green: Chandra 4-6 keV