X-ray spectral fitting in X-ray survey fields: CDF-S and COSMOS

Chandra Deep Field-South (CDF-S)

≈4Ms Chandra exposure (3Ms more to come in few weeks)

≈3Ms XMM-Newton exposure

Deep multi-wavelength coverage

One of the legacy fields (no deeper field for the next 20 yrs)

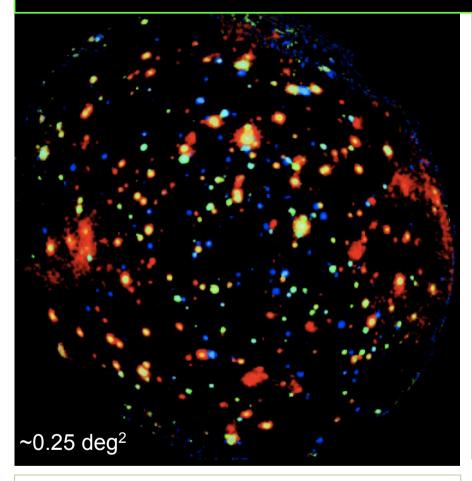
COSMOS

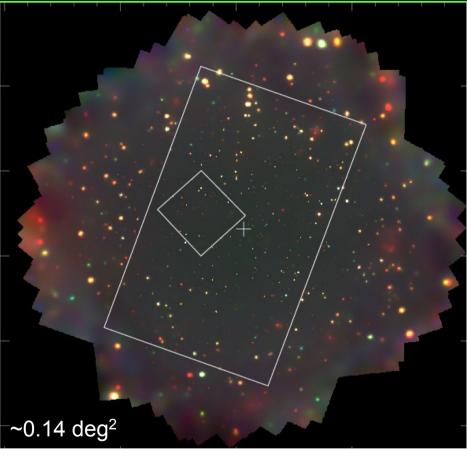
≈1.8Ms *Chandra* exposure (+2.8Ms extending area and depth)

≈1.55Ms XMM-Newton exposure

Deep multi-wavelength coverage

Shallower than the CDF-S but on a larger patch of the sky


Chandra: good on-axis PSF (i.e., excellent angular resolution) and low background

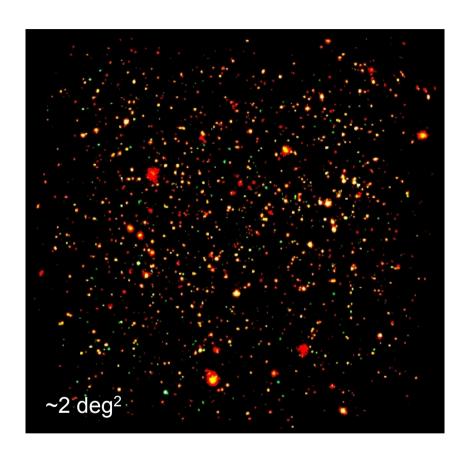

→ Sensitive to faint and distant AGN

XMM-Newton: larger effective area (hence photon statistics), but much worse angular resolution and higher background

→ Better for X-ray spectroscopy of relatively bright AGN

The deepest X-ray field: CDF-S

XMM-CDFS 3 Ms survey (PI: A. Comastri; Ranalli+13)


 $F(2-10\text{keV})\approx6.6\times10^{-16}\,\text{erg/cm}^2/\text{s}$

Chandra-CDFS 4 Ms survey
(PI: R. Giacconi, W.N Brandt; Xue+11)
Further extension to 7Ms (2014)

 $F(0.5-2keV)\approx 10^{-17} erg/cm^2/s$

Capable of probing the high-z Universe with some photon statistics

Relatively large-area X-ray field: COSMOS

 \sim 0.9 deg²

XMM-COSMOS 1.5 Ms survey (PI: G. Hasinger; Cappelluti+09)

 $F(2-10keV)\approx 9.3\times 10^{-15} erg/cm^2/s$

Chandra-COSMOS 1.8 Ms survey (PI: M. Elvis; Elvis+09)

Extension to 2.2 deg² completed last year

 $F(0.5-2keV)\approx 1.9\times 10^{-16} erg/cm^2/s$

Capable of probing rare (e.g., luminous) objects

PLAN (I)

MAIN

- CDF-S: Fit Chandra spectra for 2/4 sources (excluding XID_Xue11=198) and the XMM spectra (all EPIC cameras) for these two sources; compare the spectral results
- 2. COSMOS: Fit simultaneously Chandra/XMM/NuSTAR data for ½ AGN

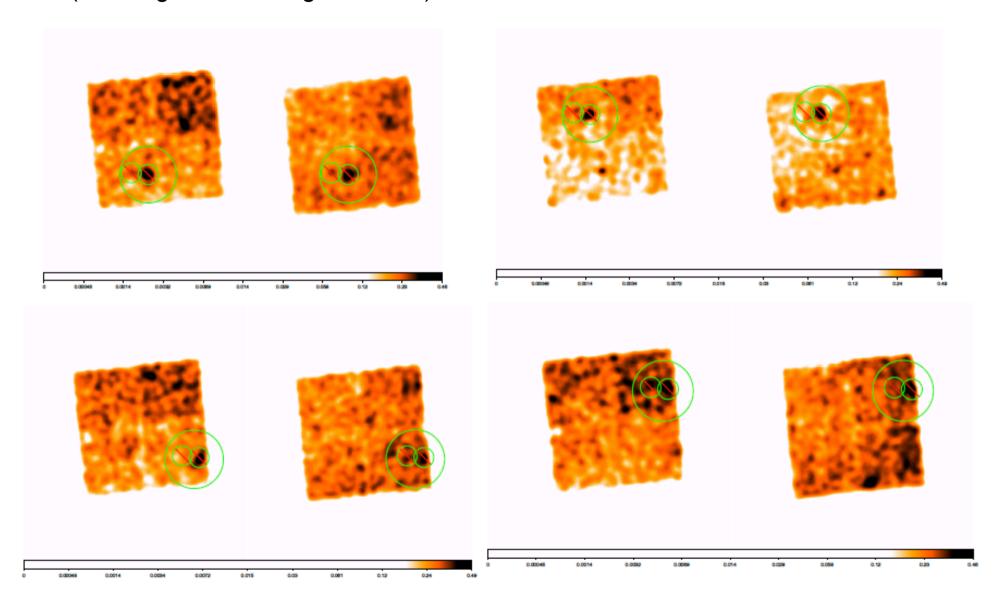
XID_Xue11 412 546 533 193	XID_XMM 144 180 48 289	Source coordinates 03:32:29.86 -27:51:06.1 03:32:39.68 -27:48:51.1 03:32:38.93 -27:57:00.9 03:32:13.25 -27:42:41.3	z 3.700 3.064 0.298 0.605	Opt. Class + Info NL (Comastri+11) NL (Vito+13) NL NL	1 CDF-S
198	_	03:32:13.86 -27:42:49.3	0.735	NL (close to Xue=193)	

2 COSMOS

Chandra-ID	XMM-ID	Source coordinates	z	Opt. Class	
358	1	150.10517 +1.98123	0.372	BL	
482	2608	150.42484 +2.066277	0.125	NL	

All spectra and response matrices are provided

PLAN (II)


MAIN - CDFS

- 1. Group the spectra (grppha) accordingly to the quality of the data
- 2. Load spectra in XSPEC
- 3. Define a spectral model and fit it to the data
- 4. Once a physically justified model is obtained, save the X-ray spectral parameters (including errors) and produce confidence contours
- 5. Check for further components (to lower the data/model residuals) Return to point 3
- 6. For each spectrum, compare *Chandra* and XMM-*Newton* spectral results

MAIN - COSMOS

1. The same as above; here all of the spectra (*Chandra*, XMM-*Newton* and *NuSTAR*) are fitted *simultaneously*. What about relative normalizations?

NuSTAR: two detectors, large PSF FWHM, strong gradients in the background (dark regions in the figure below) across the field of view

PLAN (III)

OPTIONAL (not necessarily in this order)

- a. Fit some of the remaining CDF-S Chandra/XMM-Newton spectra
- b. Verify the X-ray spectral differences between XMM_ID=289 and the two Chandra sources XID_Xue11=193 and 198
- c. Fit the COSMOS spectra of the remaining source

Effects of blending in XMM exposures

Chandra

Chandra

b.

All spectra and response matrices are provided

Main publications

CDF-S

- Comastri A. et al. 2011, A&A, 526, L9 Introduction to heavily obscured AGN in XMM-CDFS and focus on the AGN at z=3.700
- Xue Y.Q. et al., 2011, ApJS, 195, 10 4Ms Chandra source catalog
- Vito F. et al. 2013, MNRAS, 428, 354

 High-redshift AGN population in the CDF-S: X-ray spectra and LogN-LogS
- Ranalli P. et al. 2013, A&A, 555, A42 The XMM deep survey in the CDF-S III. Point source catalogue and number counts in the hard X-rays
- Tozzi P. et al. 2006, A&A, 451 457 X-ray spectral analysis of the CDF-S sources using 1Ms Chandra data
- Norman C. et al. 2002, ApJ, 571, 218
 Focus on the preliminary Chandra data of the obscured AGN at z=3.700

COSMOS

- Brusa M. et al. 2010, ApJ, 716, 348
 The XMM-Newton wide-field survey in the COSMOS field (XMM-COSMOS)
- Civano F. et al. 2012, ApJ Suppl., 201, 30 The Chandra COSMOS Survey. III. Optical and infrared identification of X-ray point sources