

The foundamental parameters of X-ray telescopes

What happens

..since the birth of X-ray Astronomy in 1962, improvements were carried out in terms of sensitivity, angular resolution, energy resolution and energy bandpass

The once-golden age of X-ray Astronomy

....where we were in 1999.... and we still are there...

XMM-Newton

Hitomi

Chandra = angular resolution

Only four, robust shells High-quality of shell production to allow <arcsec on-axis angular resolution (the best so far in X-rays)

$$\vartheta_{crit} \propto \frac{\sqrt{\rho}}{E}$$

High Resolution Mirror Assembly (HRMA)

Chandra focal-plane detectors: CCDs

XMM-*Newton* = large effective area

3 modules, 58 shells

 $\vartheta_{crit} \propto \frac{\sqrt{\rho}}{E}$

XMM-Newton: all instruments at work simultaneously

xmm observatory system

Chandra: High Resolution Mirror Assembly (HRMA): Effective Area

Chandra: quantum efficiency

Chandra: effective area

Chandra: vignetting

Ratio of the off-axis vs. on-axis counts at different off-axis angles

Hard X-ray photons are more difficult to focus → Vignetting

XMM-Newton: mirror effective (geometric) area

XMM-Newton: quantum efficiency

Strong decrease in the QE above 10 keV, where also the effective area due to the mirrors has a significant decrease

XMM-Newton: effective area

Energy [keV]

XMM-Newton: vignetting

Strong vignetting (as expected) for high-energy photons, partly compensated by the large effective area (e.g., wrt. *Chandra*)

You will account for all this information creating a file named arf (ancillary response file)

Chandra

XMM-Newton

Point Spread Function (PSF) – describes the response of an imaging system to a point source or point object.

HEW (PSF), FWHM (PSF) = angular resolution

PSF = function of (x,y) or (r, ϑ) .

High Resolution Mirror Assembly (HRMA): On-axis PSF

On-axis PSF size and shape

High Resolution Mirror Assembly (HRMA): Off-axis PSF

CDF-N 2Ms exposure

Resulting image on the focal plane of ACIS

XMM-Newton: the EPIC on-axis PSF

spider-like pattern due to the support of the Wolter I mirrors

Mirror module	2	3	4
Instr. chain ^a	\mathbf{pn}	MOS-1+RGS-1	MOS-2+RGS-2
	orbit/ground	orbit/ground	orbit/ground
FWHM ["]	$< 12.5^{b}/6.6$	4.3/6.0	4.4/4.5
HEW["]	15.2/15.1	13.8/13.6	13.0/12.8

PSF FWHM higher than in *Chandra* but much larger effective area Background (and confusion limit) can be an issue

XMM-Newton: the EPIC on-axis PSF

XMM-Newton: the EPIC off-axis PSF

XMM-Newton: effective area dependence on the filter choice

To avoid contamination from bright, soft objects (e.g., stars), a medium/thick filter is adopted

Last but not least....

Energy resolution

Chandra: energy resolution

6000

8000

10000

400 E

 $\Delta E(FWHM)/E \propto E^{-1/2}$ (E in keV)

You will account for all this information creating a file named rmf (redistribution matrix file)