Pictor A with Chandra: jet & hotspot

Pic A is a nearby (z =0.035) radio galaxy optically classified as broad-line radio galaxy. It is an isolated source.

It is a double-lobed radio source with a FR II morphology

VLA 20 cm

Chandra 0.5-5keV + radio contours (5.5 GHz)

Analysis of the Chandra Observation: jet and western hot spot

Merged Observation: morphological study

Datasets: merged file of 15 Chandra observations from 1999 to 2015, 466 ks exposure time.

Superposition of the X-ray and radio images (DS9) to identify the regions for the X-ray analysis.

X-ray study of the jet knot

• Jet: extraction of the spectrum of the knot B (supposed to be variable) and production of the .rmf and .arf files (CIAO) from T>40 ks obs (1 spectrum per each observation);

- Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity (variability?);
- Optional 1: spectral analysis of the co-added X-ray spectra of knot B (same procedure as 4C 29.30);
- Optional 2: brightness profiles of the X-ray jet (with ds9).

Western hot spot: X-ray study & SED

- extraction of the spectrum/spectra and production of the .rmf and .arf files (CIAO) of the Western hotspot from T>40ks observations (1 spectrum per each observation);
- Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity;
- •2002-1014 temporal behaviour of the hotspot: chi² applied to the long-term light curve of the hotspot.

Figure 8. The best-fitting photon indices, 1 keV flux densities and total flux in the *Chandra* band for a single power-law model of the W hotspot as a function of observing date. Red dashed lines show the values derived from a joint fit to the data, effectively a weighted mean for all the observations.

see http://adsabs.harvard.edu/abs/2016MNRAS.455.3526H

Western hot spot - SED

- •Optional 1: spectral analysis of the co-added X-ray spectra of Western hotspot (1 spectrum per observation);
- Optional 2: plot of the hot spot SED (see next slides).

Western hot spot - SED

Radio Data

HST Data

SED HOT SPOT PICTOR A

λ (cm)	Flux (Jy)
2	1.6
3.6	1.5
6	2.1
20	5.3
90	16

$\lambda({A})$	$Flux(\mu Jy)$
2900	30
6130	104

Western hot spot - SED

Infrared

Meisenheimer et al. 1989 A&A 219,63

Table 2. Hot spot photometry at optical, near-infrared and millimetre wavelengths

Hot spot	λ [μm]	v [Hz]	S,(obs) [μJy]	S _v (corr) ^a [µJy]	Remarks
Pic A west	0.45	6.67 1014	68 ± 7		from Paper III
	0.67	4.48 1014	130 ± 15		$A_V = 0.00 \pm 0.03$
	1.25	2.40 1014	126 ± 25		
	1.63	1.84 1014	165 ± 43		
	2.20	1.36 1014	223 ± 35		

^a Corrected for galactic extinction: The extinction E_{B-V} is taken from the maps of Burstein & Heiles (1982). We assume the standard extinction law given by Savage & Mathis (1979) with $A_V = 3.1E_{B-V}$.

^b The value at $b_{II} = -10^{\circ}$ is extrapolated to $b_{II} = -8.8^{\circ}$ by using the HI column from Weaver & Williams (1973).

	WISE Properties of the west flot spot of Fictor A							
	Band	λ (μ m) ^a	SN ^b	m (mag) ^e	F_{ν} (mJy) ^d	$\sigma_{ m sys}~(m mJy)^{ m e}$	$f_{\rm c}^{\rm f}$	$f_{\rm r}^{\rm s}$
Wednesd	W1	3.35	45.8	13.368 ± 0.024	1.39 ± 0.03	0.03	0.992	1
	W2	4.60	50.2	12.324 ± 0.022	2.02 ± 0.04	0.06	0.994	1
	W3	11.56	35.7	9.569 ± 0.03	4.60 ± 0.13	0.21	0.937	1
	W4	22.09	13.1	7.215 ± 0.083	9.98 ± 0.76	0.57	0.993	0.92

 Table 1

 WISE Properties of the West Hot Spot of Pictor A

ay, November Notes.

^a The isophotal wavelength of the *WISE* photometric band.

^b The signal-to-noise ratio.

^c The source magnitude in the Vega unit.

^d The corresponding flux density.

^e The systematic error of the WISE photometry (Jarrett et al. 2011).

^f The color-correction factor for $\alpha = 1$.

⁸ The additional correction factor for red sources (see Wright et al. 2010).

Isobe et al 2017 The Astrophysical Journal, 850:193 (7pp), 2017

References

- •Wilson et al. 2001, ApJ 547, 740
- •Marshall et al. 2010, ApJL 714, 213
- •Hardcastle et al. 2016, MNRAS 455, 3526
- •Perley et al. 1997, A&A 329, 12

Logarithmic Error Bars

- Suppose that one has a sufficient number of measurements to make an estimate of a measured quantity y and report its error, ± δy.
- The error, ± δy, is represented on a Cartesian plot by extending lines of the appropriate size above and below the point y.

log Error Bars (cont.)

 If plotted on a logarithmic plot, however, this practice leads to asymmetric error bars.

log Error Bars (cont.)

 On the assumption of small errors, a differiential analysis can be used

$$\delta z \approx dz = d\left[\log(y)\right] = \frac{1}{2.303} \frac{dy}{y} \approx 0.434 \frac{\delta y}{y}$$

• The error δz is thus given by the *relative error* in y

